A306100 Square array T(n,k) = number of plane partitions of n with parts colored in (at most) k colors; n >= 0, k >= 0; read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 6, 0, 1, 4, 21, 34, 13, 0, 1, 5, 36, 102, 122, 24, 0, 1, 6, 55, 228, 525, 378, 48, 0, 1, 7, 78, 430, 1540, 2334, 1242, 86, 0, 1, 8, 105, 726, 3605, 8964, 11100, 3690, 160, 0, 1, 9, 136, 1134, 7278, 25980, 56292, 47496, 11266, 282, 0
Offset: 0
Examples
The array starts: [1 1 1 1 1 1 ...] = A000012 [0 1 2 3 4 5 ...] = A001477 [0 3 10 21 36 55 ...] = A014105 [0 6 34 102 228 430 ...] = A067389 [0 13 122 525 1540 3605 ...] [0 24 378 2334 8964 25980 ...] [0 48 1242 11100 56292 203280 ...]
Links
- Alois P. Heinz, Antidiagonals n = 0..50, flattened
- OEIS wiki, Plane partitions.
- Wikipedia, Plane partition.
Crossrefs
Formula
T(n,k) = Sum_{i=0..k} C(k,i) * A319600(n,i). - Alois P. Heinz, Sep 28 2018
Extensions
Edited by Alois P. Heinz, Sep 26 2018
Comments