A306102 Numbers that are the difference of two positive squares in at least two ways.
15, 21, 24, 27, 32, 33, 35, 39, 40, 45, 48, 51, 55, 56, 57, 60, 63, 64, 65, 69, 72, 75, 77, 80, 81, 84, 85, 87, 88, 91, 93, 95, 96, 99, 104, 105, 108, 111, 112, 115, 117, 119, 120, 123, 125, 128, 129, 132, 133, 135, 136, 140, 141, 143, 144, 145, 147, 152, 153, 155, 156
Offset: 1
Keywords
Links
- Geoffrey Campbell, Numbers that are the difference of two squares in two or more ways, Number Theory group on LinkedIn, July 8, 2018.
Programs
-
Mathematica
Select[Range@156, Length@ FindInstance[x^2 - y^2 == # && x>y>0, {x,y}, Integers, 2] == 2 &] (* Giovanni Resta, Jul 10 2018 *)
-
PARI
select( is(n)=A100073(n)>1, [1..200]) \\ M. F. Hasler, Jul 10 2018
Formula
A306102 = { n = 2k+1 | A056924(n) > 1 } U { n = 4k | A056924(n/4) > 1 }. - M. F. Hasler, Jul 10 2018
Comments