A306187 Number of n-times partitions of n.
1, 1, 3, 10, 65, 371, 3780, 33552, 472971, 5736082, 97047819, 1547576394, 32992294296, 626527881617, 15202246707840, 352290010708120, 9970739854456849, 262225912049078193, 8309425491887714632, 250946978120046026219, 8898019305511325083149
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jan 27 2019: (Start) The a(1) = 1 through a(3) = 10 partitions: (1) ((2)) (((3))) ((11)) (((21))) ((1)(1)) (((111))) (((2)(1))) (((11)(1))) (((2))((1))) (((1)(1)(1))) (((11))((1))) (((1)(1))((1))) (((1))((1))((1))) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..410
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1, 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: a:= n-> b(n$3): seq(a(n), n=0..25);
-
Mathematica
ptnlevct[n_,k_]:=Switch[k,0,1,1,PartitionsP[n],_,SeriesCoefficient[Product[1/(1-ptnlevct[m,k-1]*x^m),{m,n}],{x,0,n}]]; Table[ptnlevct[n,n],{n,0,8}] (* Gus Wiseman, Jan 27 2019 *)
Formula
a(n) = A323718(n,n).
Comments