cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306187 Number of n-times partitions of n.

Original entry on oeis.org

1, 1, 3, 10, 65, 371, 3780, 33552, 472971, 5736082, 97047819, 1547576394, 32992294296, 626527881617, 15202246707840, 352290010708120, 9970739854456849, 262225912049078193, 8309425491887714632, 250946978120046026219, 8898019305511325083149
Offset: 0

Views

Author

Alois P. Heinz, Jan 27 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n. The only 0-times partition of n is the number n itself. - Gus Wiseman, Jan 27 2019

Examples

			From _Gus Wiseman_, Jan 27 2019: (Start)
The a(1) = 1 through a(3) = 10 partitions:
  (1)  ((2))     (((3)))
       ((11))    (((21)))
       ((1)(1))  (((111)))
                 (((2)(1)))
                 (((11)(1)))
                 (((2))((1)))
                 (((1)(1)(1)))
                 (((11))((1)))
                 (((1)(1))((1)))
                 (((1))((1))((1)))
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..25);
  • Mathematica
    ptnlevct[n_,k_]:=Switch[k,0,1,1,PartitionsP[n],_,SeriesCoefficient[Product[1/(1-ptnlevct[m,k-1]*x^m),{m,n}],{x,0,n}]];
    Table[ptnlevct[n,n],{n,0,8}] (* Gus Wiseman, Jan 27 2019 *)

Formula

a(n) = A323718(n,n).