A306203 Matula-Goebel numbers of balanced rooted semi-identity trees.
1, 2, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 31, 32, 53, 57, 59, 64, 67, 73, 85, 127, 128, 131, 133, 159, 241, 256, 269, 277, 311, 331, 335, 365, 367, 371, 393, 399, 439, 512, 649, 709, 719, 739, 751, 917, 933, 937, 1007, 1024, 1113, 1139, 1205, 1241, 1345, 1523
Offset: 1
Keywords
Examples
The sequence of all unlabeled balanced rooted semi-identity trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 11: ((((o)))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 21: ((o)(oo)) 31: (((((o))))) 32: (ooooo) 53: ((oooo)) 57: ((o)(ooo)) 59: ((((oo)))) 64: (oooooo) 67: (((ooo))) 73: (((o)(oo))) 85: (((o))((oo)))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]]; mgtree[n_]:=If[n==1,{},mgtree/@primeMS[n]]; Select[Range[100],And[psidQ[#],SameQ@@Length/@Position[mgtree[#],{}]]&]
Comments