cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306203 Matula-Goebel numbers of balanced rooted semi-identity trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 31, 32, 53, 57, 59, 64, 67, 73, 85, 127, 128, 131, 133, 159, 241, 256, 269, 277, 311, 331, 335, 365, 367, 371, 393, 399, 439, 512, 649, 709, 719, 739, 751, 917, 933, 937, 1007, 1024, 1113, 1139, 1205, 1241, 1345, 1523
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root. The only balanced rooted identity trees are rooted paths.

Examples

			The sequence of all unlabeled balanced rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  31: (((((o)))))
  32: (ooooo)
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  64: (oooooo)
  67: (((ooo)))
  73: (((o)(oo)))
  85: (((o))((oo)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    psidQ[n_]:=And[UnsameQ@@DeleteCases[primeMS[n],1],And@@psidQ/@primeMS[n]];
    mgtree[n_]:=If[n==1,{},mgtree/@primeMS[n]];
    Select[Range[100],And[psidQ[#],SameQ@@Length/@Position[mgtree[#],{}]]&]