A306206 a(n) = Sum_{k=0..n} (n^2)!/((n^2-n*k)!*n!^k).
1, 2, 13, 3445, 127028721, 1249195963773451, 5343245431687763366112193, 14729376926426500067331714992293420777, 36332859343341728199556523379140726537646663631786369
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..26
Programs
-
PARI
{a(n) = sum(k=0, n, (n^2)!/((n^2-n*k)!*n!^k))}
Formula
From Vaclav Kotesovec, Jan 29 2019: (Start)
a(n) ~ 2 * (n^2)! / (n!)^n.
a(n) ~ n^(n^2 - n/2 + 1) / (exp(1/12) * 2^((n-3)/2) * Pi^((n-1)/2)). (End)