A306209 Number A(n,k) of permutations of [n] within distance k of a fixed permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 6, 5, 1, 1, 1, 2, 6, 14, 8, 1, 1, 1, 2, 6, 24, 31, 13, 1, 1, 1, 2, 6, 24, 78, 73, 21, 1, 1, 1, 2, 6, 24, 120, 230, 172, 34, 1, 1, 1, 2, 6, 24, 120, 504, 675, 400, 55, 1, 1, 1, 2, 6, 24, 120, 720, 1902, 2069, 932, 89, 1, 1, 1, 2, 6, 24, 120, 720, 3720, 6902, 6404, 2177, 144, 1
Offset: 0
Examples
A(4,1) = 5: 1234, 1243, 1324, 2134, 2143. A(5,2) = 31: 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235, 14253, 14325, 14523, 21345, 21354, 21435, 21453, 21534, 21543, 23145, 23154, 24135, 24153, 31245, 31254, 31425, 31524, 32145, 32154, 34125. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, 2, 2, 2, ... 1, 3, 6, 6, 6, 6, 6, 6, 6, ... 1, 5, 14, 24, 24, 24, 24, 24, 24, ... 1, 8, 31, 78, 120, 120, 120, 120, 120, ... 1, 13, 73, 230, 504, 720, 720, 720, 720, ... 1, 21, 172, 675, 1902, 3720, 5040, 5040, 5040, ... 1, 34, 400, 2069, 6902, 17304, 30960, 40320, 40320, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..36, flattened
- Torleiv Kløve, Spheres of Permutations under the Infinity Norm - Permutations with limited displacement, Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
- Torleiv Kløve, Generating functions for the number of permutations with limited displacement, Electron. J. Combin., 16 (2009), #R104.
Crossrefs
Programs
-
Mathematica
A[0, _] = 1; A[n_ /; n > 0, k_] := A[n, k] = Permanent[Table[If[Abs[i - j] <= k, 1, 0], {i, 1, n}, {j, 1, n}]]; Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1 }] // Flatten (* Jean-François Alcover, Oct 18 2021, after Alois P. Heinz in A130152 *)
Formula
A(n,k) = Sum_{j=0..k} A130152(n,j) for n > 0, A(0,k) = 1.
Comments