cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306212 Numbers that are the sum of squares of three distinct positive integers in arithmetic progression.

Original entry on oeis.org

14, 29, 35, 50, 56, 66, 77, 83, 93, 107, 110, 116, 126, 140, 149, 155, 158, 165, 179, 194, 197, 200, 210, 219, 224, 242, 245, 251, 261, 264, 275, 290, 293, 302, 308, 315, 318, 332, 341, 350, 365, 371, 372, 381, 395, 398, 413, 428, 434, 435, 440, 450, 461, 462, 464, 482
Offset: 1

Views

Author

Antonio Roldán, Jan 29 2019

Keywords

Examples

			35 = 1^2 + 3^2 + 5^2, with 3 - 1 = 5 - 3 = 2;
371 = 1^2 + 9^2 + 17^2, with 9 - 1 = 17 - 9 = 8. Also 371 = 9^2 + 11^2 + 13^2, with 11 - 9 = 13 - 11 = 2.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= {seq(seq(3*a^2+2*b^2, b=1..min(a-1, floor(sqrt((N-3*a^2)/2)))),a=1..floor(sqrt(N/3)))}:
    sort(convert(S,list)); # Robert Israel, Jun 08 2020
  • PARI
    for(n=3, 600, k=sqrt(n/3); a=2; v=0; while(a<=k&&v==0, b=(n-3*a^2)/2; if(b==truncate(b)&&issquare(b), d=sqrt(b); if(d>=1&&d<=a-1, v=1; print1(n,", "))); a+=1))
    
  • PARI
    w=List(); for(n=3, 600, k=sqrt(n/3); for(a=2, k, for(c=1, a-1, v=(a-c)^2+a^2+(a+c)^2; if(v==n, listput(w,n))))); print(vecsort(Vec(w),,8))