A306213 Numbers that are the sum of cubes of three distinct positive integers in arithmetic progression.
36, 99, 153, 216, 288, 405, 408, 495, 645, 684, 792, 855, 972, 1071, 1197, 1224, 1407, 1548, 1584, 1701, 1728, 1968, 2079, 2241, 2304, 2403, 2541, 2673, 2736, 3051, 3060, 3240, 3264, 3537, 3540, 3888, 3960, 4059, 4131, 4257, 4500, 4587, 4833, 5049, 5160, 5256, 5472, 5643, 5832, 5940, 6336, 6369, 6669
Offset: 1
Keywords
Examples
153 = 1^3 + 3^3 + 5^3, with 3 - 1 = 5 - 3 = 2; 972 = 3^3 + 6^3 + 9^3, with 6 - 3 = 9 - 6 = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # for terms <= N S:= {}: for a from 1 while a^3 + (a+1)^3 + (a+2)^3 <= N do for d from 1 do x:= a^3 + (a+d)^3 + (a+2*d)^3; if x > N then break fi; S:= S union {x} od od: sort(convert(S,list)); # Robert Israel, Dec 14 2022
-
PARI
for(n=3, 7000, k=(n/3)^(1/3); a=2; v=0; while(a<=k&&v==0, b=(n-3*a^3)/(6*a); if(b==truncate(b)&&issquare(b), d=sqrt(b), d=0); if(d>=1&&d<=a-1, v=1; print1(n,", ")); a+=1))
-
PARI
w=List(); for(n=3, 7000, k=(n/3)^(1/3); for(a=2, k, for(c=1, a-1, v=(a-c)^3+a^3+(a+c)^3; if(v==n, listput(w,n))))); print(vecsort(Vec(w),,8))
Comments