cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306213 Numbers that are the sum of cubes of three distinct positive integers in arithmetic progression.

Original entry on oeis.org

36, 99, 153, 216, 288, 405, 408, 495, 645, 684, 792, 855, 972, 1071, 1197, 1224, 1407, 1548, 1584, 1701, 1728, 1968, 2079, 2241, 2304, 2403, 2541, 2673, 2736, 3051, 3060, 3240, 3264, 3537, 3540, 3888, 3960, 4059, 4131, 4257, 4500, 4587, 4833, 5049, 5160, 5256, 5472, 5643, 5832, 5940, 6336, 6369, 6669
Offset: 1

Views

Author

Antonio Roldán, Jan 29 2019

Keywords

Comments

Numbers that can be written as 3*a*(a^2 + 2*b^2) = (a-b)^3 + a^3 + (a+b)^3 where 0 < b < a. - Robert Israel, Dec 15 2022

Examples

			153 = 1^3 + 3^3 + 5^3, with 3 - 1 = 5 - 3 = 2;
972 = 3^3 + 6^3 + 9^3, with 6 - 3 = 9 - 6 = 3.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    S:= {}:
    for a from 1 while a^3 + (a+1)^3 + (a+2)^3 <= N do
      for d from 1 do
        x:= a^3 + (a+d)^3 + (a+2*d)^3;
        if x > N then break fi;
        S:= S union {x}
    od od:
    sort(convert(S,list)); # Robert Israel, Dec 14 2022
  • PARI
    for(n=3, 7000, k=(n/3)^(1/3); a=2; v=0; while(a<=k&&v==0, b=(n-3*a^3)/(6*a); if(b==truncate(b)&&issquare(b), d=sqrt(b), d=0); if(d>=1&&d<=a-1, v=1; print1(n,", ")); a+=1))
    
  • PARI
    w=List(); for(n=3, 7000, k=(n/3)^(1/3); for(a=2, k, for(c=1, a-1, v=(a-c)^3+a^3+(a+c)^3; if(v==n, listput(w,n))))); print(vecsort(Vec(w),,8))