cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306226 Triangle read by rows: T(n,k) = Sum_{i=0..n/2} C(n-i,i)*C(n-i,k-i)*C(n-1,i) (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 11, 5, 1, 13, 36, 37, 13, 1, 21, 92, 160, 123, 35, 1, 31, 200, 520, 655, 401, 96, 1, 43, 387, 1405, 2575, 2541, 1293, 267, 1, 57, 686, 3325, 8295, 11711, 9492, 4131, 750, 1, 73, 1136, 7112, 23128, 43736, 50148, 34476, 13107, 2123, 1, 91, 1782, 14040, 57708, 140112, 212856, 205332, 122535, 41353, 6046
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 16 2019

Keywords

Examples

			1;
1, 1;
1, 3, 2;
1, 7, 11, 5;
1, 13, 36, 37, 13;
1, 21, 92, 160, 123, 35;
		

Crossrefs

Cf. A123160.
Cf. A005773 (right diagonal).

Programs

  • Maxima
    T(n,k):=sum(binomial(n-i,i)*binomial(n-i,k-i)*binomial(n-1,i),i,0,n/2);

Formula

G.f.: (x*y+x+1)/(2*sqrt((-x*y-x+1)^2-4*x*y*(x*y+x)))+1/2.