A306231 Lexicographically earliest sequence of distinct positive terms such that for any n > 0 and any k > 0, floor((2^k) / a(n)) AND floor((2^k) / a(n+1)) = 0 (where AND denotes the bitwise AND operator).
1, 2, 3, 6, 4, 5, 20, 8, 9, 72, 16, 7, 14, 21, 78, 32, 11, 352, 64, 10, 40, 15, 24, 12, 30, 35, 390, 48, 96, 51, 102, 60, 13, 832, 117, 144, 18, 168, 42, 28, 39, 180, 56, 84, 63, 70, 780, 120, 26, 128, 19, 504, 36, 288, 126, 45, 112, 151, 896, 156, 720, 224
Offset: 1
Examples
The first terms, alongside A007733(a(n)) and the binary representation of 1/a(n) with periodic part in parentheses, are: n a(n) period bin(1/a(n)) -- ---- ------ ------------------- 1 1 1 1.(0) 2 2 1 0.1(0) 3 3 2 0.(01) 4 6 2 0.0(01) 5 4 1 0.01(0) 6 5 4 0.(0011) 7 20 4 0.00(0011) 8 8 1 0.001(0) 9 9 6 0.(000111) 10 72 6 0.000(000111) 11 16 1 0.0001(0) 12 7 3 0.(001) 13 14 3 0.0(001) 14 21 6 0.(000011) 15 78 12 0.0(000001101001) 16 32 1 0.00001(0) 17 11 10 0.(0001011101) 18 352 10 0.00000(0001011101) 19 64 1 0.000001(0) 20 10 4 0.0(0011)
Links
Programs
-
PARI
See Links section.
Comments