cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306260 Number of ways to write n as w*(4w+1) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 2, 3, 3, 2, 4, 4, 3, 1, 2, 1, 2, 3, 1, 2, 5, 5, 4, 5, 5, 4, 3, 1, 2, 4, 4, 4, 4, 5, 5, 7, 2, 2, 5, 3, 4, 5, 5, 3, 7, 4, 2, 5, 2, 4, 7, 6, 6, 6, 5, 6, 5, 3, 5, 6, 5, 8, 9, 8, 4, 7, 2, 4, 9, 2, 6, 5, 8, 6, 7, 7, 2, 6, 4, 4, 12, 6, 5, 5, 7, 9, 8, 5, 6, 9, 8
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 01 2019

Keywords

Comments

Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 1, 2, 4, 7, 9, 11, 14, 23, 25, 28, 37.
Conjecture 2: Each n = 0,1,2,... can be written as w*(4w+2) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
Conjecture 3: Each n = 0,1,2,... can be written as 4*w^2 + x*(4x+1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
We have verified that a(n) > 0 for all n = 0..2*10^6. By Theorem 1.3 in the linked 2017 paper of the author, any nonnegative integer can be written as x*(4x-1) + y*(4y-2) + z*(4z-3) with x,y,z integers.

Examples

			a(11) = 1 with 11 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 1*(4*1-3).
a(23) = 1 with 23 = 2*(4*2+1) + 1*(4*1-1) + 1*(4*1-2) + 0*(4*0-3).
a(25) = 1 with 25 = 0*(4*0+1) + 1*(4*1-1) + 2*(4*2-2) + 2*(4*2-3).
a(28) = 1 with 28 = 2*(4*2+1) + 0*(4*0-1) + 0*(4*0-2) + 2*(4*2-3).
a(37) = 1 with 37 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 3*(4*3-3).
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=QQ[n]=IntegerQ[Sqrt[16n+1]]&&Mod[Sqrt[16n+1],8]==1;
    tab={};Do[r=0;Do[If[QQ[n-x(4x-1)-y(4y-2)-z(4z-3)],r=r+1],{x,0,(Sqrt[16n+1]+1)/8},{y,0,(Sqrt[4(n-x(4x-1))+1]+1)/4},{z,0,(Sqrt[16(n-x(4x-1)-y(4y-2))+9]+3)/8}];tab=Append[tab,r],{n,0,100}];Print[tab]
Showing 1-1 of 1 results.