A306261 Least k > 0 such that 2n - p is prime where p is some prime divisor of 4n^2 - (2k-1)^2 for n >= 4.
1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1
Offset: 4
Keywords
Examples
a(4) = 1 because 4*4^2 - (2*1-1)^2 = 63 = 3^2*7 and 2*4 - 3 = 5 is prime; a(5) = 1 because 4*5^2 - (2*1-1)^2 = 99 = 3^2*11 and 2*5 - 3 = 7 is prime; a(6) = 2 because 4*6^2 - (2*1-1)^2 = 143 = 11*13 and 2*6 - 11 = 1 is not a prime, 2*6 - 13 = -1 is not a prime, but 4*6^2 -(2*2-1)^2 = 135 = 3^3*5 and 2*6 - 5 = 7 is prime.
Programs
-
PARI
a(n)=for(k=1,2*n,my(f=factor(4*n^2-(2*k-1)^2)[,1]);for(i=1,#f,if(isprime(2*n-f[i]),return(k)))); "does not exist" \\ Charles R Greathouse IV, Feb 17 2019
Comments