cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306201 Number of unlabeled balanced rooted semi-identity trees with n nodes.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 6, 8, 12, 16, 25, 35, 53, 77, 117, 173, 265, 396, 605, 919, 1408, 2147, 3305, 5070, 7819, 12049, 18635, 28811, 44672, 69264, 107618, 167292, 260446, 405686, 632743, 987441, 1542555, 2411208, 3772247, 5905002, 9250436, 14499234, 22740910, 35686092
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root. The only balanced identity trees are rooted paths.

Examples

			The a(1) = 1 through a(7) = 8 balanced rooted semi-identity trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)      (oooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))     ((ooooo))
                 (((o)))  (((oo)))   (((ooo)))    (((oooo)))
                          ((((o))))  ((o)(oo))    ((o)(ooo))
                                     ((((oo))))   ((((ooo))))
                                     (((((o)))))  (((o)(oo)))
                                                  (((((oo)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[ursit[n],SameQ@@Length/@Position[#,{}]&]],{n,10}]

Extensions

More terms from Alois P. Heinz, Jan 29 2019

A306274 Number of unlabeled balanced rooted semi-identity trees with 2n-1 nodes and depth n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 14, 22, 36, 59, 96, 156, 253, 410, 666, 1078, 1744, 2824, 4569, 7386, 11942, 19302, 31188, 50380, 81376, 131403, 212166, 342492, 552811, 892148, 1439619, 2322709, 3747152, 6044436, 9749175, 15723022, 25355115, 40884174, 65918823, 106274262
Offset: 1

Views

Author

Alois P. Heinz, Feb 02 2019

Keywords

Crossrefs

Cf. A306269.

Formula

a(n) = A306269(2n-1,n).
Showing 1-2 of 2 results.