A306273 Numbers k such that k * rev(k) is a square, where rev=A004086, decimal reversal.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 111, 121, 131, 141, 144, 151, 161, 169, 171, 181, 191, 200, 202, 212, 222, 232, 242, 252, 262, 272, 282, 288, 292, 300, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 400, 404, 414, 424, 434, 441, 444, 454, 464, 474, 484, 494, 500, 505, 515, 525, 528, 535
Offset: 1
Examples
One example for each family: family 1 is A002113: 323 * 323 = 323^2; family 2 is A035090: 169 * 961 = 13^2 * 31^2 = 403^2; family 3 is A082994: 288 * 882 = (2*144) * (2*441) = 504^2; family 4 is A002113(j) * 100^k: 75700 * 757 = 7570^2; family 5 is A035090(j) * 100^k: 44100 * 144 = 2520^2; family 6 is A082994(j) * 100^k: 8670000 * 768 = 81600^2; family 7 is A323061(j) * 10^(2k+1): 5476580 * 856745 = 2166110^2.
References
- C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY. (1966), pp. 88-89.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), p. 168.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Bernard Schott, Sequences and Families
- Eric Weisstein's World of Mathematics, Reversal
Crossrefs
Programs
-
Maple
revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: filter:= n -> issqr(n*revdigs(n)): select(filter, [$0..1000]);# Robert Israel, Feb 09 2019
-
Mathematica
Select[Range[0, 535], IntegerQ@ Sqrt[# IntegerReverse@ #] &] (* Michael De Vlieger, Feb 03 2019 *)
-
PARI
isok(n) = issquare(n*fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Feb 04 2019
Comments