cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306273 Numbers k such that k * rev(k) is a square, where rev=A004086, decimal reversal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 111, 121, 131, 141, 144, 151, 161, 169, 171, 181, 191, 200, 202, 212, 222, 232, 242, 252, 262, 272, 282, 288, 292, 300, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 400, 404, 414, 424, 434, 441, 444, 454, 464, 474, 484, 494, 500, 505, 515, 525, 528, 535
Offset: 1

Views

Author

Bernard Schott, Feb 02 2019

Keywords

Comments

The first nineteen terms are palindromes (cf. A002113). There are exactly seven different families of integers which together partition the terms of this sequence. See the file "Sequences and families" for more details, comments, formulas and examples.
From Chai Wah Wu, Feb 18 2019: (Start)
If w is a term with decimal representation a, then the number n corresponding to the string axa is also a term, where x is a string of k repeated digits 0 where k >= 0. The number n = w*10^(k+m)+w = w*(10^(k+m)+1) where m is the number of digits of w. Then R(n) = R(w)*10^(k+m)+R(w) = R(w)(10^(k+m)+1). Then n*R(n) = w*R(w)(10^(k+m)+1)^2 which is a square since w is a term.
The same argument shows that numbers corresponding to axaxa, axaxaxa, ... are also terms.
For example, since 528 is a term, so are 528528, 5280528, 52800528, 5280052800528, etc.
(End)

Examples

			One example for each family:
family 1 is A002113: 323 * 323 = 323^2;
family 2 is A035090: 169 * 961 = 13^2 * 31^2 = 403^2;
family 3 is A082994: 288 * 882 = (2*144) * (2*441) = 504^2;
family 4 is A002113(j) * 100^k: 75700 * 757 = 7570^2;
family 5 is A035090(j) * 100^k: 44100 * 144 = 2520^2;
family 6 is A082994(j) * 100^k: 8670000 * 768 = 81600^2;
family 7 is A323061(j) * 10^(2k+1): 5476580 * 856745 = 2166110^2.
		

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY. (1966), pp. 88-89.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), p. 168.

Crossrefs

Cf. A083406, A083407, A083408, A117281 (Squares = k * rev(k) in at least two ways).

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= n -> issqr(n*revdigs(n)):
    select(filter, [$0..1000]);# Robert Israel, Feb 09 2019
  • Mathematica
    Select[Range[0, 535], IntegerQ@ Sqrt[# IntegerReverse@ #] &] (* Michael De Vlieger, Feb 03 2019 *)
  • PARI
    isok(n) = issquare(n*fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Feb 04 2019