A306275 Number of values 0 < k <= n for which there are no k distinct n-th roots of unity that sum to zero.
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, 6, 8, 8, 16, 2, 18, 4, 12, 10, 22, 2, 20, 12, 18, 6, 28, 2, 30, 16, 20, 16, 24, 2, 36, 18, 24, 4, 40, 2, 42, 10, 8, 22, 46, 2, 42, 4, 32, 12, 52, 2, 40, 6, 36, 28, 58, 2, 60, 30, 12, 32, 48, 2, 66, 16, 44, 4, 70, 2, 72
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Matt Baker, The Balanced Centrifuge Problem, Math Blog, 2018.
- Holly Krieger and Brady Haran, The Centrifuge Problem, Numberphile video (2018)
- T. Y. Lam and K. H. Leung, On vanishing sums for roots of unity, arXiv:math/9511209 [math.NT], 1995.
- Gary Sivek, On vanishing sums of distinct roots of unity, #A31, Integers 10 (2010), 365-368.
Programs
-
Maple
a:= proc(n) option remember; local f, b; f, b:= map(i-> i[1], ifactors(n)[2]), proc(m, i) option remember; m=0 or i>0 and (b(m, i-1) or f[i]<=m and b(m-f[i], i)) end; forget(b); (t-> add( `if`(b(j, t) and b(n-j, t), 0, 1), j=1..n))(nops(f)) end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 03 2019
-
Mathematica
a := Function[{n}, Count[Function[{k}, Fold[And, (#!=0)& /@ RootReduce @* Total /@ Subsets[Exp[2*Pi*I*#/n]& /@ Range[0,n-1], {k}]]] /@ Range[1,n],True] ] (* Second program: *) A322366[n_] := A322366[n] = Module[{f, b}, f = FactorInteger[n][[All, 1]]; b[m_, i_] := b[m, i] = m == 0 || i > 0 && (b[m, i - 1] || f[[i]] <= m && b[m - f[[i]], i]); Function[t, Sum[If[b[j, t] && b[n - j, t], 1, 0], {j, 0, n}]][Length[f]]]; a[n_] := If[n == 1, 1, 1 + n - A322366[n]]; Array[a, 100] (* Jean-François Alcover, May 23 2020, after Alois P. Heinz *)
Formula
a(n) = #{k in {1,2,...,n} | for all subsets U of {exp(2*Pi*i*m/n)|m=0,1,...,n-1} of size #U=k we have sum(U) != 0 }.
a(n) = 1 + n - A322366(n) for n > 1, a(1) = 1. - Alois P. Heinz, Feb 03 2019
a(n) is even for n >= 3. - Alois P. Heinz, Feb 05 2019
Extensions
More terms from Alois P. Heinz, Feb 03 2019
Comments