A306292 Number of asymmetric Dyck paths of semilength n.
0, 0, 2, 8, 32, 112, 394, 1360, 4736, 16544, 58324, 207088, 741184, 2671008, 9688410, 35344800, 129620480, 477590080, 1767170812, 6563935664, 24465914304, 91481858208, 343058261572, 1289901443168
Offset: 1
Keywords
Examples
For n=3, the a(2)=2 asymmetric Dyck paths are UUDDUD and UDUUDD.
Links
- J. Bonin, A. de Mier, and M. Noy, Lattice path matroids: enumerative aspects and Tutte polynomials, J Comb Theory Ser A 104 (2003), 63-94.
- L.-H. Deng, E. Y. P. Deng, and L. W. Shapiro, The Riordan group and symmetric lattice paths, arXiv:0906.1844 [math.CO] (2009).
- Zoe M. Himwich and Noah A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [qbio.PE], 2019; Adv. Appl. Math. 113 (2020), 101939.
Programs
-
Mathematica
Table[Binomial[2 n, n]/(n + 1) - Binomial[n, Floor[n/2]], {n, 0, 30}]
-
PARI
a(n) = binomial(2*n, n)/(n+1) - binomial(n, n\2); \\ Michel Marcus, Jan 22 2020
Formula
a(n) = (2n)! / (n! (n+1))! - n! / ( (floor(n/2))! (ceiling(n/2))! ).
Comments