A306293 Number of binary words of length n such that in every prefix and in every suffix the number of 0's and the number of 1's differ by at most two.
1, 2, 4, 6, 10, 16, 26, 42, 70, 110, 194, 288, 550, 754, 1586, 1974, 4630, 5168, 13634, 13530, 40390, 35422, 120146, 92736, 358390, 242786, 1071074, 635622, 3205030, 1664080, 9598706, 4356618, 28763350, 11405774, 86224514, 29860704, 258542470, 78176338
Offset: 0
Examples
a(3) = 6: 001, 010, 011, 100, 101, 110. a(4) = 10: 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1011, 1100, 1101. a(5) = 16: 00101, 00110, 01001, 01010, 01011, 01100, 01101, 01110, 10001, 10010, 10011, 10100, 10101, 10110, 11001, 11010. a(6) = 26: 001010, 001011, 001100, 001101, 001110, 010010, 010011, 010100, 010101, 010110, 011001, 011010, 011100, 100011, 100101, 100110, 101001, 101010, 101011, 101100, 101101, 110001, 110010, 110011, 110100, 110101. a(7) = 42: 0010101, 0010110, 0011001, ..., 1100110, 1101001, 1101010. a(8) = 70: 00101010, ..., 00111100, ..., 11000011, ..., 11010101.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4193
- Index entries for linear recurrences with constant coefficients, signature (0,8,0,-22,0,23,0,-6).
Crossrefs
Programs
-
Maple
a:= n-> `if`(n<2, 1+n, 2*(<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-6|23|-22|8>>^iquo(n-2, 2, 'r').[<<2, 5, 13, 35>>, <<3, 8, 21, 55>>][1+r])[1, 1]): seq(a(n), n=0..50);
Formula
G.f.: -(x+1)*(4*x^7-4*x^6-7*x^5-5*x^4+5*x^3+5*x^2-x-1) / ((3*x^2-1) *(2*x^2-1) *(x^2+x-1) *(x^2-x-1)).
a(n) <= A306306(n).
Comments