cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306299 Number of binary carry-connected subsets of [n] containing n (for n > 0).

Original entry on oeis.org

1, 1, 1, 4, 1, 12, 28, 64, 1, 212, 452, 960, 1972, 4032, 8128, 16384, 1, 64284, 129260, 259904, 520636, 1043264, 2087744, 4177920, 8381836, 16768832, 33541952, 67092480, 134201152, 268419072, 536854528, 1073741824, 1, 4294569380, 8589336404, 17179068096
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2019

Keywords

Comments

Two integers are binary carry-connected if their bitwise AND is not zero.
For n = 0 the carry-connected subset is the empty set.

Crossrefs

Partial differences of A325105.
Cf. A131577.

Programs

  • Maple
    h:= proc(n, s) local i, m; m:= n;
          for i in s do m:= Bits[Or](m, i) od; {m}
        end:
    g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union
                  h(n, w)))(select(x-> Bits[And](n, x)>0, s)):
    b:= proc(n, s) option remember; `if`(n=0,
          `if`(nops(s)>1, 0, 1), b(n-1, s)+b(n-1, g(n, s)))
        end:
    a:= n-> `if`(n=0, 1, b(n-1, {n})):
    seq(a(n), n=0..42);
  • Mathematica
    h[n_, s_] := Module[{i, m = n}, Do[m = BitOr[m, i], {i, s}]; {m}];
    g[n_, s_] := Function[w, If[w == {}, s ~Union~ {n}, s ~Complement~ w ~Union~ h[n, w]]][Select[s, BitAnd[n, #] > 0&]];
    b[n_, s_] := b[n, s] = If[n == 0, If[Length[s] > 1, 0, 1], b[n - 1, s] + b[n - 1, g[n, s]]];
    a[n_] := If[n == 0, 1, b[n - 1, {n}]];
    a /@ Range[0, 42] (* Jean-François Alcover, May 10 2020, after Maple *)

Formula

a(n) = A325105(n) - A325105(n-1) for n > 0, a(0) = 1.
a(n) = 1 <=> n in { A131577 }.
a(n) mod 4 = 0 <=> not (n in { A131577 }).