cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A307046 Numbers k such that k^2 reversed is a prime and k^2 + (k^2 reversed) is a semiprime.

Original entry on oeis.org

4, 28, 40, 62, 106, 140, 193, 196, 274, 316, 334, 400, 410, 554, 556, 620, 862, 866, 874, 884, 962, 1004, 1025, 1066, 1154, 1174, 1190, 1205, 1256, 1274, 1294, 1360, 1390, 1394, 1396, 1400, 1744, 1784, 1816, 1844, 1891, 1900, 1927, 1960, 1981, 1988, 2672, 2696, 2710, 2722, 2740, 2786, 2800, 3016, 3026
Offset: 1

Views

Author

Robert Price, Mar 31 2019

Keywords

Examples

			4^2=16, reversed is 61. 16+61=77 which is semiprime (7*11), so 4 is in this sequence.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local a,b;
    a:= n^2;
    b:= revdigs(a);
    isprime(b) and numtheory:-bigomega(a+b)=2
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Mar 31 2019
  • Mathematica
    Select[Range[50000],
    PrimeQ[IntegerReverse[#^2]] &&
       PrimeOmega[#^2 + IntegerReverse[#^2]] == 2 &]
Showing 1-1 of 1 results.