cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306301 Numbers k such that k^2 reversed is a prime and k^2+(k^2 reversed) is a prime.

Original entry on oeis.org

14, 136, 190, 266, 280, 1036, 1060, 1306, 1406, 1898, 1934, 2660, 2686, 2746, 2776, 3112, 10040, 10250, 10546, 10550, 10630, 10880, 11090, 11156, 11204, 11276, 11354, 11386, 11474, 11740, 11804, 11914, 12064, 12136, 12194, 12250, 12410, 12524, 12626, 12710, 12770, 12794, 12916, 13060
Offset: 1

Views

Author

Robert Price, Mar 31 2019

Keywords

Comments

All terms are even and not divisible by 3. - Robert Israel, Apr 09 2019

Examples

			14 is a term because 691 (the reverse of 14^2=196) and 196+691=887 are two prime numbers.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(k) local v; v:= revdigs(k^2); isprime(v) and isprime(v+k^2) end proc:
    select(filter, [seq(seq(6*i+j,j=[2,4]),i=0..10000)]); # Robert Israel, Apr 09 2019
  • Mathematica
    Select[Range[50000], PrimeQ[IntegerReverse[#^2]] && PrimeQ[#^2 + IntegerReverse[#^2]] &]
  • PARI
    isok(k) = my(kk=fromdigits(Vecrev(digits(k^2)))); isprime(kk) && isprime(k^2+kk); \\ Michel Marcus, Apr 01 2019
Showing 1-1 of 1 results.