A306310 Odd numbers k > 1 such that 2^((k-1)/2) == -(2/k) = -A091337(k) (mod k), where (2/k) is the Jacobi (or Kronecker) symbol.
341, 5461, 10261, 15709, 31621, 49981, 65077, 83333, 137149, 176149, 194221, 215749, 219781, 276013, 282133, 534061, 587861, 611701, 653333, 657901, 665333, 688213, 710533, 722261, 738541, 742813, 769757, 950797, 1064053, 1073021, 1109461, 1141141, 1357621, 1398101
Offset: 1
Keywords
Examples
341 is a term because (2/341) = -1, and 2^((341-1)/2) == 1 (mod 341).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Mathematics Stack Exchange, There are no a in Z and odd k > 1 such that (a/k) = 1 and a^((k-1)/2) == -1 (mod k)
Crossrefs
| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+---------+
-----------------------------------+-------------------+---------+---------+
-----------------------------------+-------------------+---------+---------+
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+---------+
(union of first two) | | | |
-----------------------------------+-------------------+---------+---------+
(union of all three) | | | |
Programs
-
PARI
isA306310(k)=(k%8==5) && Mod(2, k)^((k-1)/2)==1
-
PARI
isok(k) = (k>1) && (k%2) && (Mod(2, k)^((k-1)/2) == Mod(-kronecker(2, k), k)); \\ Michel Marcus, Feb 07 2019
Comments