A306312 Number of terms of the set of divisors of n that are not the product of any other two distinct divisors.
1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 3, 4, 2, 4, 2, 3, 3, 3, 3, 5, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 4, 3, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 5, 2, 3, 4, 3, 3, 4, 2, 4, 3, 4, 2, 5, 2, 3, 4, 4, 3, 4, 2, 4, 3, 3, 2, 5, 3, 3, 3, 4
Offset: 1
Keywords
Examples
Divisors of 198 are 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198. Here the set is 1, 2, 3, 9, 11 because 2*3 = 6, 2*9 = 18, 2*11 = 22, 3*11 = 33, 6*11 = 66, 9*11 = 99, 2*99 = 198. Then a(198) = 5.
Programs
-
Maple
with(numtheory): with(combinat): P:=proc(q) local a,b,c,k,n; for n from 2 to q do if isprime(n) then print(2) else a:=sort([op(divisors(n) minus {1})]); b:=choose(a,2); c:=[]; for k from 1 to nops(b) do c:=[op(c),b[k][1]*b[k][2]]; od; a:=[1,op({op(a)} minus {op(c)})]; print(nops(a)); fi; od; end: P(10^6);
-
PARI
a(n) = my(f = factor(n)[, 2]); sum(i = 1, #f, min(2, f[i])) \\ David A. Corneth, Feb 06 2019
Comments