cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319111 Expansion of Product_{k>=1} 1/(1 - phi(k)*x^k), where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 174, 278, 447, 707, 1122, 1766, 2729, 4213, 6482, 9880, 15069, 22799, 34290, 51378, 76777, 114365, 169324, 250162, 368505, 540575, 792042, 1154798, 1680385, 2439101, 3530308, 5103380, 7349875, 10564955, 15155752, 21696072, 31007949, 44199845
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1/(1-phi(k)*x^k),k=1..50),x=0,42): seq(coeff(a,x,n),n=0..41); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 41; CoefficientList[Series[Product[1/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 41; CoefficientList[Series[Exp[Sum[Sum[EulerPhi[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d EulerPhi[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} phi(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Feb 08 2019: (Start)
a(n) ~ c * 2^(2*n/5), where
c = 18827.6460615531202942792897255332975807324818737172163... if mod(n,5) = 0
c = 18827.5079339024144115146595255453426552477117955925738... if mod(n,5) = 1
c = 18827.4967567108036710998657106724179082561779712900405... if mod(n,5) = 2
c = 18827.4818413568083742650057347700058389606441225811016... if mod(n,5) = 3
c = 18827.4547665561882994953942505862213438332903500716893... if mod(n,5) = 4
(End)

A357521 Expansion of Product_{k>=1} (1 - mu(k)*x^k).

Original entry on oeis.org

1, -1, 1, 0, -1, 2, -3, 3, -2, 0, 1, -2, 2, -2, 1, -2, 3, -4, 4, -2, 0, 2, -5, 6, -5, 3, -2, 1, -1, 1, 0, 0, 3, -6, 6, -5, 4, 0, -5, 7, -7, 5, -2, 2, 0, -2, 0, 1, 5, -7, 11, -14, 11, -6, -1, 9, -12, 8, -11, 11, -6, 10, -13, 8, -2, -12, 26, -26, 24, -20, 2, 11, -8, 14, -15, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[(1 - MoebiusMu[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Sum[d MoebiusMu[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]

A357524 Expansion of Product_{k>=1} 1 / (1 + mu(k)*x^k).

Original entry on oeis.org

1, -1, 2, -1, 2, 0, 1, 2, 0, 3, 0, 4, 1, 4, 2, 4, 4, 4, 5, 6, 6, 6, 8, 8, 10, 9, 11, 12, 13, 14, 17, 17, 20, 19, 23, 24, 28, 27, 30, 34, 34, 40, 41, 47, 48, 50, 56, 62, 64, 71, 72, 80, 85, 91, 99, 104, 113, 112, 128, 135, 147, 153, 159, 176, 180, 196, 210, 220, 233, 240, 264
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/(1 + MoebiusMu[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[d (-MoebiusMu[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 70}]

A357525 Expansion of Product_{k>=1} (1 + mu(k)*x^k).

Original entry on oeis.org

1, 1, -1, -2, -1, 0, 1, 1, 0, 0, 1, 0, -2, -2, 1, 4, 3, -2, -4, -2, 0, 2, 3, 0, -1, 1, 0, -3, -3, -1, 2, 4, 3, 0, -2, -1, 2, 0, -5, -3, 3, 3, 0, -2, -4, -2, 4, 5, 3, 3, 1, -4, -9, -8, 3, 11, 6, 0, -3, -7, -4, 2, -1, -2, 6, 8, -2, -10, -8, 4, 14, 11, 2, -6, -11, -5
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[(1 + MoebiusMu[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Sum[d (-MoebiusMu[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 75}]
Showing 1-4 of 4 results.