cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306351 Number of ways to split an n-cycle into connected subgraphs all having at least 4 vertices.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 35, 53, 78, 111, 157, 222, 313, 438, 610, 848, 1178, 1634, 2263, 3131, 4330, 5986, 8272, 11427, 15782, 21794, 30093, 41548, 57359, 79183, 109307, 150887, 208279, 287496, 396838, 547761, 756077, 1043611, 1440488, 1988289
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			The a(7) = 1 through a(9) = 10 partitions:
  {{1234567}}  {{12345678}}    {{123456789}}
               {{1234}{5678}}  {{1234}{56789}}
               {{1238}{4567}}  {{12345}{6789}}
               {{1278}{3456}}  {{12349}{5678}}
               {{1678}{2345}}  {{12389}{4567}}
                               {{1239}{45678}}
                               {{12789}{3456}}
                               {{1289}{34567}}
                               {{16789}{2345}}
                               {{1789}{23456}}
		

Crossrefs

Programs

  • Mathematica
    cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[cycedsprop[n,3],Range[n]]],{n,15}]

Formula

G.f.: (2*x^9-3*x^8+x^3-3*x^2+3*x-1)/((x^4+x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019

Extensions

More terms from Alois P. Heinz, Feb 10 2019