A306351 Number of ways to split an n-cycle into connected subgraphs all having at least 4 vertices.
1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 35, 53, 78, 111, 157, 222, 313, 438, 610, 848, 1178, 1634, 2263, 3131, 4330, 5986, 8272, 11427, 15782, 21794, 30093, 41548, 57359, 79183, 109307, 150887, 208279, 287496, 396838, 547761, 756077, 1043611, 1440488, 1988289
Offset: 0
Examples
The a(7) = 1 through a(9) = 10 partitions: {{1234567}} {{12345678}} {{123456789}} {{1234}{5678}} {{1234}{56789}} {{1238}{4567}} {{12345}{6789}} {{1278}{3456}} {{12349}{5678}} {{1678}{2345}} {{12389}{4567}} {{1239}{45678}} {{12789}{3456}} {{1289}{34567}} {{16789}{2345}} {{1789}{23456}}
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-2,1).
Crossrefs
Programs
-
Mathematica
cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[cycedsprop[n,3],Range[n]]],{n,15}]
Formula
G.f.: (2*x^9-3*x^8+x^3-3*x^2+3*x-1)/((x^4+x-1)*(x-1)^2). - Alois P. Heinz, Feb 10 2019
Extensions
More terms from Alois P. Heinz, Feb 10 2019