A306355 Numbers k such that the period of 1/k, or 0 if 1/k terminates, is strictly greater than the period of the decimal expansion of 1/m for all m < k.
1, 3, 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 289, 313, 337, 361, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823
Offset: 1
Examples
7 is a term because 1/7 has a period of 6, which is greater than the periods of 1/m for m < 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Project Euler, Reciprocal cycles: Problem 26
- Eric Weisstein's World of Mathematics, Repeating Decimal
Programs
-
Maple
count:= 1: A[1]:= 1: m:= 0: for k from 0 to 100 do for d in [3,7,9,11] do x:= 10*k+d; p:= numtheory:-order(10,x); if p > m then m := p; count:= count+1; A[count]:= x fi od od: seq(A[i],i=1..count); # Robert Israel, Feb 10 2019
-
Mathematica
ResourceFunction["ProgressiveMaxPositions"]@ Map[n |-> First[RealDigits[n]] /. {{_, list_?ListQ} :> Length[list], list_?ListQ -> 0}][ 1/Range[1050]] (* Peter Cullen Burbery, Aug 05 2023 *)
Formula
RECORDS transform of A051626.
Comments