cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306363 For n > 1 having omega(n) = k and canonical prime factorization n = d_1*d_2*...*d_k, a(n) = Sum_{i=1..k} (d_i*a(n/d_i) + (n/d_i)); a(1)=0.

Original entry on oeis.org

0, 1, 1, 1, 1, 10, 1, 1, 1, 14, 1, 14, 1, 18, 16, 1, 1, 22, 1, 18, 20, 26, 1, 22, 1, 30, 1, 22, 1, 155, 1, 1, 28, 38, 24, 26, 1, 42, 32, 26, 1, 205, 1, 30, 28, 50, 1, 38, 1, 54, 40, 34, 1, 58, 32, 30, 44, 62, 1, 235, 1, 66, 32, 1, 36, 305, 1, 42, 52, 295, 1, 34, 1, 78
Offset: 1

Views

Author

David James Sycamore, Feb 10 2019

Keywords

Comments

Recursion similar to that of A006022. k=1 => a(n)=1; k=2 => a(n) = 2*(d_1 + d_2); claim: a(n)=A000522(k-1)*A066504(n); k = omega(n). Inductive proof on k (sketch): Let A=A000522 and B=A066504 = Sum_{i=1..k} (n/d_i). True for k=1,2 so assume true for arbitrary k. Then for n with omega(n)=k+1, a(n) = (Sum_{i=1..k+1} d_i*(n/d_i)) + B(n) = A(k-1)*k*B(n) + B(n) = ((A(k-1)*k) + 1)*B(n). But (A(k-1)k)+1) = A(k) by recursive formula for A000522, so a(n) = A(k)*B(n); hence true for k+1.

Examples

			n=6 = 2*3, a(n) = 2*a(3) + 3*a(2) + 3 + 2 = 2*(2+3) = 10.
n=210=2*3*5*7; k=4, a(n)=A000522(3)*(2*3*5 + 2*3*7 + 2*5*7 + 3*5*7) = 16*247 = 3952.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); sum(k=1, #f~, my(dk=f[k,1]^f[k,2]); dk*a(n/dk) + (n/dk))); \\ Michel Marcus, Feb 19 2019

Formula

a(n) = A000522(k-1)*A066504(n); k = omega(n) = A001221(n).