A306363 For n > 1 having omega(n) = k and canonical prime factorization n = d_1*d_2*...*d_k, a(n) = Sum_{i=1..k} (d_i*a(n/d_i) + (n/d_i)); a(1)=0.
0, 1, 1, 1, 1, 10, 1, 1, 1, 14, 1, 14, 1, 18, 16, 1, 1, 22, 1, 18, 20, 26, 1, 22, 1, 30, 1, 22, 1, 155, 1, 1, 28, 38, 24, 26, 1, 42, 32, 26, 1, 205, 1, 30, 28, 50, 1, 38, 1, 54, 40, 34, 1, 58, 32, 30, 44, 62, 1, 235, 1, 66, 32, 1, 36, 305, 1, 42, 52, 295, 1, 34, 1, 78
Offset: 1
Keywords
Examples
n=6 = 2*3, a(n) = 2*a(3) + 3*a(2) + 3 + 2 = 2*(2+3) = 10. n=210=2*3*5*7; k=4, a(n)=A000522(3)*(2*3*5 + 2*3*7 + 2*5*7 + 3*5*7) = 16*247 = 3952.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
PARI
a(n) = if (n==1, 0, my(f=factor(n)); sum(k=1, #f~, my(dk=f[k,1]^f[k,2]); dk*a(n/dk) + (n/dk))); \\ Michel Marcus, Feb 19 2019
Comments