A306364 Triangular array of the number of binary, rooted, leaf-labeled tree topologies with n leaves and k cherries, n >= 2, 1 <= k <= floor(n/2).
1, 3, 12, 3, 60, 45, 360, 540, 45, 2520, 6300, 1575, 20160, 75600, 37800, 1575, 181440, 952560, 793800, 99225, 1814400, 12700800, 15876000, 3969000, 99225, 19958400, 179625600, 314344800, 130977000, 9823275
Offset: 2
Examples
For n=4 leaves A, B, C, and D, a(4,1)=12 and a(4,2)=3. The 12 labeled topologies with 1 cherry are (((A,B),C),D), (((A,B),D),C), (((A,C),B),D), (((A,C),D),B), (((A,D),B),C), (((A,D),C),B), (((B,C),A),D), (((B,C),D),A), (((B,D),A),C), (((B,D),C),A), (((C,D),A),B), (((C,D),B),A). The 3 labeled topologies with 2 cherries are ((A,B),(C,D)), ((A,C),(B,D)), ((A,D),(B,C)). Triangular array begins: 1; 3; 12, 3; 60, 45; 360, 540, 45; 2520, 6300, 1575; 20160, 75600, 37800, 1575; 181440, 952560, 793800, 99225; 1814400, 12700800, 15876000, 3969000, 99225; ...
Links
- Robert S. Maier, Triangular recurrences, generalized Eulerian numbers, and related number triangles, Adv. Appl. Math. 146 (2023), 102485.
- Noah A. Rosenberg, Enumeration of lonely pairs of gene trees and species trees by means of antipodal cherries, Adv. Appl. Math. 102 (2019), 1-17.
- Taoyang Wu and Kwok Pui Choi, On joint subtree distributions under two evolutionary models, Theor. Pop. Biol. 108 (2016), 13-23.
Programs
-
Mathematica
Table[n! (n - 2)!/(2^(2 k - 1) (n - 2 k)! k! (k - 1)!), {n, 2, 15}, {k, 1, Floor[n/2]}]
Formula
T(n,k) = n! (n-2)! / (2^(2k-1) (n-2k)! k! (k-1)! ).
Comments