cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306376 Sum of the 2 X 2 minors in the n X n Pascal matrix.

Original entry on oeis.org

0, 0, 1, 7, 34, 144, 574, 2226, 8533, 32587, 124453, 476145, 1826175, 7022379, 27072487, 104614863, 405122290, 1571859864, 6109296442, 23781666198, 92704406320, 361832294964, 1413879679672, 5530590849168, 21654384302110, 84859670743770, 332818903663390
Offset: 0

Views

Author

Alois P. Heinz, Feb 11 2019

Keywords

Crossrefs

Column k=2 of A184173.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, (n-1)*n/2,
         ((7*n^2-16*n+6)*a(n-1)-2*(7*n^2-17*n+9)*a(n-2)+
          4*(n-1)*(2*n-3)*a(n-3))/(n*(n-2)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n < 3, (n-1)n/2,
         ((7n^2 - 16n + 6) a[n-1] - 2(7n^2 - 17n + 9) a[n-2] +
         4(n-1)(2n-3) a[n-3])/(n(n-2))];
    a /@ Range[0, 30] (* Jean-François Alcover, May 03 2021, after Alois P. Heinz *)

Formula

G.f.: -1/(2*(x-1))*(1/(2*x-1)+1/sqrt(1-4*x)).
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 19 2024