A306379 Dirichlet convolution of psi(n) with itself.
1, 6, 8, 21, 12, 48, 16, 60, 40, 72, 24, 168, 28, 96, 96, 156, 36, 240, 40, 252, 128, 144, 48, 480, 96, 168, 168, 336, 60, 576, 64, 384, 192, 216, 192, 840, 76, 240, 224, 720, 84, 768, 88, 504, 480, 288, 96, 1248, 176, 576, 288, 588, 108, 1008, 288, 960, 320
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Dedekind Function.
- Wikipedia, Dedekind psi function.
Crossrefs
Cf. A001615.
Programs
-
Maple
psi:= proc(n) local p; option remember; n*mul(1+1/p, p = numtheory:-factorset(n)): end proc: f:= proc(n) local d; add(psi(d)*psi(n/d),d = numtheory:-divisors(n)) end proc: map(f, [$1..100]); # Robert Israel, Feb 28 2019
-
Mathematica
psi[n_] := n Times @@ (1+1/FactorInteger[n][[All, 1]]); psi[1] = 1; a[n_] := Sum[psi[d] psi[n/d], {d, Divisors[n]}]; Array[a, 100] (* Jean-François Alcover, Oct 16 2020 *) f[p_, e_] := (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
-
PARI
f(n) = n*sumdivmult(n, d, issquarefree(d)/d); \\ A001615 a(n) = sumdiv(n, d, f(d) * f(n/d)); \\ Michel Marcus, Feb 11 2019
Formula
a(n) = Sum_{d|n} psi(d) * psi(n/d).
From Jianing Song, Apr 28 2019: (Start)
Multiplicative with a(p^e) = (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1).
Dirichlet g.f.: (zeta(s) * zeta(s-1) / zeta(2*s))^2. (End)
Sum_{k=1..n} a(k) ~ 225*(2*log(n) + 4*gamma - 1 + 24*zeta'(2)/Pi^2 - 720*zeta'(4)/Pi^4) * n^2 / (4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020
Comments