cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306379 Dirichlet convolution of psi(n) with itself.

Original entry on oeis.org

1, 6, 8, 21, 12, 48, 16, 60, 40, 72, 24, 168, 28, 96, 96, 156, 36, 240, 40, 252, 128, 144, 48, 480, 96, 168, 168, 336, 60, 576, 64, 384, 192, 216, 192, 840, 76, 240, 224, 720, 84, 768, 88, 504, 480, 288, 96, 1248, 176, 576, 288, 588, 108, 1008, 288, 960, 320
Offset: 1

Views

Author

Torlach Rush, Feb 11 2019

Keywords

Comments

For n>1, a(n)>=2*n+2 with equality iff n is prime. - Robert Israel, Feb 28 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020

Crossrefs

Cf. A001615.

Programs

  • Maple
    psi:= proc(n) local p; option remember;  n*mul(1+1/p, p = numtheory:-factorset(n)): end proc:
    f:= proc(n) local d;
       add(psi(d)*psi(n/d),d = numtheory:-divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 28 2019
  • Mathematica
    psi[n_] := n Times @@ (1+1/FactorInteger[n][[All, 1]]); psi[1] = 1;
    a[n_] := Sum[psi[d] psi[n/d], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Oct 16 2020 *)
    f[p_, e_] := (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
  • PARI
    f(n) = n*sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = sumdiv(n, d, f(d) * f(n/d)); \\ Michel Marcus, Feb 11 2019

Formula

a(n) = Sum_{d|n} psi(d) * psi(n/d).
From Jianing Song, Apr 28 2019: (Start)
Multiplicative with a(p^e) = (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1).
Dirichlet g.f.: (zeta(s) * zeta(s-1) / zeta(2*s))^2. (End)
Sum_{k=1..n} a(k) ~ 225*(2*log(n) + 4*gamma - 1 + 24*zeta'(2)/Pi^2 - 720*zeta'(4)/Pi^4) * n^2 / (4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020