A306383 Number of ways to write n as x*(2x+1) + y*(2y+1) + z*(2z+1), where x,y,z are nonnegative integers with x <= y <= z.
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 0
Offset: 0
Keywords
Examples
a(223595) = 1 with 223595 = 95*(2*95+1) + 200*(2*200+1) + 250*(2*250+1). a(290660) = 1 with 290660 = 136*(2*136+1) + 149*(2*149+1) + 323*(2*323+1).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Universal sums of three quadratic polynomials, Sci. China Math., in press.
Crossrefs
Programs
-
Mathematica
QQ[n_]:=QQ[n]=IntegerQ[Sqrt[8n+1]]&&Mod[Sqrt[8n+1],4]==1; tab={};Do[r=0;Do[If[QQ[n-x(2x+1)-y(2y+1)],r=r+1],{x,0,(Sqrt[8n/3+1]-1)/4},{y,x,(Sqrt[4(n-x(2x+1))+1]-1)/4}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments