A306382 Positive integers not representable as Pen(x) + Pen(y) + 2*Pen(z), where x, y, z are nonnegative integers, and Pen(k) denotes the pentagonal number k*(3k-1)/2.
9, 18, 21, 28, 31, 39, 43, 55, 69, 74, 89, 90, 98, 109, 111, 113, 134, 135, 144, 193, 202, 214, 230, 243, 260, 265, 273, 275, 310, 510, 553, 698, 699, 749, 773, 780, 865, 878, 945, 965, 1219, 1398, 1413, 2153, 2168, 2335, 2828, 3178, 3793
Offset: 1
Keywords
Examples
a(1) = 9 since the set {Pen(x) + Pen(y) + 2*Pen(z): x,y,z = 0,1,2,...} contains 1..8 but it does not contain 9.
Links
- Georg Fischer, Table of n, a(n) for n = 1..49
- Zhi-Wei Sun, Universal sums of three quadratic polynomials, Sci. China Math., in press.
Programs
-
Mathematica
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1,6]==0); tab={};Do[Do[If[PenQ[m-x(3x-1)-y(3y-1)/2],Goto[aa]],{x,0,(Sqrt[12m+1]+1)/6},{y,0,(Sqrt[12(m-x(3x-1))+1]+1)/6}];tab=Append[tab,m];Label[aa],{m,1,5000}];Print[tab]
Comments