A306385 a(n) is the maximum number of distinct distances possible between points in a hyperrectangular grid the sum of whose dimensions is n.
1, 2, 3, 4, 5, 7, 9, 12, 15, 18, 23, 28, 33, 40, 47, 56, 65, 74, 85, 98, 111, 127, 145, 163, 181, 199, 217, 238, 261, 284, 309, 338, 368, 398, 428, 458, 488, 518, 555, 592, 631, 673, 715, 757, 804, 852, 900, 948, 997, 1052, 1107, 1163, 1222, 1281, 1340, 1407, 1474, 1541, 1608, 1675
Offset: 1
Keywords
Links
- Lorraine Lee, Ruby program which generates the sequence
Programs
-
PARI
b(v)={prod(k=1, #v, sum(i=0, v[k]-1, x^(i^2)))} c(v)={sum(i=1, #v, v[i]<>0)} a(n)={my(m=1); if(n>1, forpart(p=n, m=max(m, c(Vec(b(p)))), [2,n])); m} \\ Andrew Howroyd, Aug 11 2024
Extensions
a(44)-a(45) from Lorraine Lee, Aug 11 2024
a(46) onwards from Andrew Howroyd, Aug 11 2024