A306386 Number of chord diagrams with n chords all having arc length at least 3.
1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0
Keywords
Examples
The a(8) = 7 2-uniform set partitions with all arc lengths at least 3: {{1,4},{2,6},{3,7},{5,8}} {{1,4},{2,7},{3,6},{5,8}} {{1,5},{2,6},{3,7},{4,8}} {{1,5},{2,6},{3,8},{4,7}} {{1,5},{2,7},{3,6},{4,8}} {{1,6},{2,5},{3,7},{4,8}} {{1,6},{2,5},{3,8},{4,7}}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..404
- Gus Wiseman, The a(5) = 68 chord diagrams with all arc lengths at least 3.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1], ((8*n^4-64*n^3+142*n^2-66*n+109) *a(n-1) -(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2) +(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3) -(8*n^4-96*n^3+374*n^2-486*n+33) *a(n-4) -(4*n^3-24*n^2+39*n-2) *a(n-5))/(4*n^3-36*n^2+99*n-69)) end: seq(a(n), n=0..23); # Alois P. Heinz, Feb 27 2019
-
Mathematica
dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#
i+2&]]}]; Table[Length[dtui[Range[n],n]],{n,0,12,2}]
Formula
a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019
Extensions
a(10)-a(16) from Alois P. Heinz, Feb 26 2019
a(17)-a(21) from Alois P. Heinz, Feb 27 2019
Comments