A306396 Consider the numbers in A024796, numbers expressible in more than one way as i^2 + j^2 + k^2, where 1 <= i <= j <= k; sequence number of ways these numbers can be expressed.
2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 3, 2, 4, 2, 2, 2, 4, 3, 2, 2, 3, 2, 4, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 5, 2, 2, 4, 4, 2, 2, 5, 6, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 5, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 4, 2, 4, 4, 4, 3, 2, 4, 2, 3, 5, 2, 5, 4, 2
Offset: 1
Keywords
Examples
The fourth term in A024796 is 41, which can be expressed in two ways as the sum of three nonzero squares (1^2 + 2^2 + 6^2 or 3^2 + 4^2 + 4^2), so a(4) = 2.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
r[n_] := Length@ IntegerPartitions[n, {3}, Range[Sqrt[n]]^2]; Select[ Array[r, 300], # > 1 &] (* Giovanni Resta, Feb 21 2020 *)
Extensions
Offset changed to 1 by Jinyuan Wang, Feb 20 2020
Comments