A306403 The number of distinct products that can be formed by multiplying the parts of a partition of n into 3 positive parts.
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 19, 20, 23, 27, 29, 32, 34, 39, 43, 47, 51, 53, 59, 58, 67, 73, 75, 81, 88, 91, 93, 106, 109, 114, 117, 128, 131, 133, 145, 154, 163, 166, 174, 181, 180, 201, 206, 209, 219, 231, 240, 238, 252, 267, 272, 289, 290, 300, 299, 323, 328, 345, 349, 366, 376
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- R. J. Mathar, Java program that computes a b-file
Programs
-
Maple
a:= proc(n) option remember; local m, c, i, j, h, w; m, c:= proc() true end, 0; forget(m); for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do h:= i*j*(n-j-i); w:= m(h); if w then m(h):= false; c:= c+1 fi od od; c end: seq(a(n), n=0..80); # Alois P. Heinz, Feb 13 2019
-
Mathematica
a[n_] := a[n] = Module[{m, c = 0, i, j, h, w}, m[_] = True; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n - j - i); w = m[h]; If[w, m[h] = False; c++]]]; c]; a /@ Range[0, 80] (* Jean-François Alcover, Feb 24 2020, after Alois P. Heinz *)
Formula
a(n) <= A069905(n).