A306409
a(n) = -Sum_{0<=i
0, 1, 3, 10, 34, 120, 434, 1597, 5949, 22363, 84655, 322245, 1232205, 4729453, 18210279, 70307546, 272087770, 1055139408, 4099200524, 15951053566, 62159391150, 242542955378, 947504851414, 3705431067156, 14505084243860, 56831711106496, 222853334131080
Offset: 0
Keywords
Examples
n | a(n) | A307354 | A006134 | A120305 --+------+---------+---------+--------- 0 | 0 | 1 | 1 | 1 1 | 1 | 2 | 3 | 1 2 | 3 | 6 | 9 | 3 3 | 10 | 19 | 29 | 9 4 | 34 | 65 | 99 | 31 5 | 120 | 231 | 351 | 111
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1664
Crossrefs
Programs
-
Mathematica
Table[-Sum[Sum[(-1)^(i+j) * (i+j)!/(i!*j!), {i, 0, j-1}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 05 2019 *)
-
PARI
a(n) = -sum(i=0, n, sum(j=i+1, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
-
PARI
my(N=30, x='x+O('x^N)); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x))))) \\ Seiichi Manyama, Jan 30 2023
Formula
a(n) ~ 4^(n+1) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 05 2019
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( x *c(x)/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023