cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306409 a(n) = -Sum_{0<=i

Original entry on oeis.org

0, 1, 3, 10, 34, 120, 434, 1597, 5949, 22363, 84655, 322245, 1232205, 4729453, 18210279, 70307546, 272087770, 1055139408, 4099200524, 15951053566, 62159391150, 242542955378, 947504851414, 3705431067156, 14505084243860, 56831711106496, 222853334131080
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2019

Keywords

Examples

			n | a(n) | A307354 | A006134 | A120305
--+------+---------+---------+---------
0 |    0 |       1 |       1 |       1
1 |    1 |       2 |       3 |       1
2 |    3 |       6 |       9 |       3
3 |   10 |      19 |      29 |       9
4 |   34 |      65 |      99 |      31
5 |  120 |     231 |     351 |     111
		

Crossrefs

Partial sums of A014300. - Seiichi Manyama, Jan 30 2023

Programs

  • Mathematica
    Table[-Sum[Sum[(-1)^(i+j) * (i+j)!/(i!*j!), {i, 0, j-1}], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Apr 05 2019 *)
  • PARI
    a(n) = -sum(i=0, n, sum(j=i+1, n, (-1)^(i+j)*(i+j)!/(i!*j!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(1-x)*(3-sqrt(1-4*x))))) \\ Seiichi Manyama, Jan 30 2023

Formula

a(n) = A006134(n) - A307354(n).
a(n) = (A006134(n) - A120305(n))/2.
a(n) ~ 4^(n+1) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 05 2019
G.f.: ( 1/(sqrt(1-4*x) * (1-x)) ) * ( x *c(x)/(1 + x *c(x)) ), where c(x) is the g.f. of A000108. - Seiichi Manyama, Jan 30 2023