cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306413 a(n) is the multiplicative order of 2 modulo A001567(n).

Original entry on oeis.org

10, 40, 28, 24, 18, 36, 28, 11, 56, 36, 60, 28, 36, 16, 230, 15, 14, 660, 36, 52, 80, 198, 30, 252, 72, 200, 60, 58, 20, 42, 22, 45, 48, 28, 96, 70, 40, 48, 460, 180, 60, 3432, 88, 72, 102, 112, 168, 44, 264, 60, 192, 21, 144, 156, 30, 153, 28, 180, 100, 22, 1012, 36, 58, 48, 60, 28, 612, 120, 60, 166, 1008, 52, 532, 148, 9840
Offset: 1

Views

Author

Jianing Song, Feb 13 2019

Keywords

Comments

By definition, A001567 lists the odd composite numbers k such that ord(2,k) divides k - 1, where ord(2,k) is the multiplicative order of 2 modulo k. This sequence lists the values for ord(2,k) when k runs through A001567.

Examples

			A001567(1) = 341, 341 divides 2^10 - 1, 341 = 34*10 + 1.
A001567(2) = 561, 561 divides 2^40 - 1, 561 = 14*40 + 1.
A001567(3) = 645, 645 divides 2^28 - 1, 645 = 23*28 + 1.
A001567(4) = 1105, 1105 divides 2^24 - 1, 1105 = 46*24 + 1.
		

Crossrefs

Programs

  • Mathematica
    MultiplicativeOrder[2, #] & /@ Select[Range[1, 10^5, 2], CompositeQ[#] && PowerMod[2, # - 1, #] == 1 &] (* Amiram Eldar, Jun 29 2019 *)
  • PARI
    forstep(n=3, 1e5, 2, my(m=znorder(Mod(2,n))); if((n-1)%m==0 && !isprime(n), print1(m, ", ")))

Formula

a(n) = A002326((A001567(n)-1)/2).
a(n) = (A001567(n) - 1) / A300101(n). - Jianing Song, Dec 12 2021