cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306418 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} requiring k steps of removing singletons and cyclical adjacency initiators until reaching a fixed point, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 3, 0, 1, 2, 12, 0, 0, 0, 12, 35, 5, 0, 0, 5, 56, 100, 42, 0, 0, 0, 14, 282, 343, 231, 7, 0, 0, 0, 66, 1406, 1476, 1088, 104, 0, 0, 0, 0, 307, 7592, 7383, 4929, 909, 27, 0, 0, 0, 0, 1554, 44227, 40514, 22950, 6240, 470, 20, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Comments

See Callan's article for details on this transformation (SeparateIS).

Examples

			Triangle begins:
    1
    0    1
    0    2    0
    0    2    3    0
    1    2   12    0    0
    0   12   35    5    0    0
    5   56  100   42    0    0    0
   14  282  343  231    7    0    0    0
   66 1406 1476 1088  104    0    0    0    0
  307 7592 7383 4929  909   27    0    0    0    0
		

Crossrefs

Row sums are A000110. First column is A324011.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    qbj[stn_]:=With[{ini=Join@@Table[Select[s,If[#==Max@@Max@@@stn,MemberQ[s,First[Union@@stn]],MemberQ[s,(Union@@stn)[[Position[Union@@stn,#][[1,1]]+1]]]]&],{s,stn}],sng=Join@@Select[stn,Length[#]==1&]},DeleteCases[Table[Complement[s,Union[sng,ini]],{s,stn}],{}]];
    Table[Length[Select[sps[Range[n]],Length[FixedPointList[qbj,#]]-2==k&]],{n,0,8},{k,0,n}]