A306423 Number of coalescent histories for pseudocaterpillar gene trees G and caterpillar species trees S.
3, 11, 37, 124, 420, 1441, 5005, 17576, 62322, 222870, 802978, 2912168, 10623470, 38956365, 143521725, 530985360, 1971965490, 7348812570, 27472909590, 103002205800, 387205269360, 1459146890058, 5511120747282, 20858962792624, 79103096214100
Offset: 4
Keywords
Examples
For n=5, consider species tree ((((A_1, A_2), A_3), A_4), A_5) and gene tree ((((A_1, A_2), (A_3, A_4)), A_5). Label the nodes of the species tree 1, 2, 3, 4, from the cherry to the root, identifying each node with its immediate ancestral edge. Annotate the coalescent histories by vectors whose entries, in order, denote the locations of the coalescences of (A_1, A_2), (A_3, A_4), ((A_1, A_2), (A_3, A_4)), and ((((A_1, A_2), (A_3, A_4)), A_5). The a(5)=11 coalescent histories are (1,3,3,4), (1,3,4,4), (1,4,4,4), (2,3,3,4), (2,3,4,4), (2,4,4,4), (3,3,3,4), (3,3,4,4), (3,4,4,4), (4,3,4,4), and (4,4,4,4).
Links
- E. Alimpiev and N. A. Rosenberg, Enumeration of coalescent histories for caterpillar species trees and p-pseudocaterpillar gene trees, Adv. Appl. Math. 131 (2021), 102265.
- N. A. Rosenberg and J. H. Degnan, Coalescent histories for discordant gene trees and species trees. Theor. Pop. Biol. 77 (2010), 145-151.
Crossrefs
Programs
-
GAP
List([5..30], n-> (19*n-40)*(n-3)*Binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5))); # G. C. Greubel, Mar 07 2019
-
Magma
[(19*n-40)*(n-3)*Binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5)): n in [5..30]]; // G. C. Greubel, Mar 07 2019
-
Mathematica
Table[(19n-40)(n-3) Binomial[2n-2, n-1]/(4n(2n-3)(2n-5)), {n, 5, 30}]
-
PARI
{a(n)=(19*n-40)*(n-3)*binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5))}; for(n=5,30, print1(a(n), ", ")) \\ G. C. Greubel, Mar 07 2019
-
Sage
[(19*n-40)*(n-3)*binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5)) for n in (5..30)] # G. C. Greubel, Mar 07 2019
Formula
a(n) = (19*n-40)*(n-3)*(2*n-2)!/(4*n!*(n-1)!*(2*n-3)*(2*n-5)).
a(n) = (19*n-40)*(n-3)*C(n-1)/((2*n-3)*(2*n-5)), where C(n) is the Catalan numbers A000108.
G.f.: ((2 - 7*x + x^2) +(-2 + 3*x + x^2)*sqrt(1-4*x))/2. - G. C. Greubel, Mar 07 2019
D-finite with recurrence: +2*n*a(n) +(-11*n+18)*a(n-1) +(11*n-38)*a(n-2) +2*(2*n-11)*a(n-3)=0. - R. J. Mathar, Jan 27 2020
a(n) ~ 19 * 2^(2*n - 6) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2022
Extensions
a(4)=3 prepended by Noah A Rosenberg, Feb 10 2025
Comments