A306435 Number of distinct integers that are product of the parts of exactly one partition of n into 3 positive parts.
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 12, 12, 19, 19, 22, 27, 28, 31, 31, 38, 42, 46, 50, 50, 57, 51, 64, 71, 70, 77, 85, 86, 84, 104, 104, 108, 108, 123, 122, 119, 136, 147, 158, 156, 164, 170, 162, 194, 195, 193, 205, 219, 228, 215, 233, 254, 254, 278
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=1 of A317578.
Programs
-
Maple
a:= proc(n) option remember; local m, c, i, j, h, w; m, c:= proc() 0 end, 0; forget(m); for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do h:= i*j*(n-j-i); w:= m(h); if w=0 then m(h):= 1; c:= c+1 elif w=1 then m(h):= 2; c:= c-1 fi od od; c end: seq(a(n), n=0..80);
-
Mathematica
a[n_] := a[n] = Module[{m, c = 0, i, j, h, w}, m[_] = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n-i, 2], j++, h = i*j*(n - j - i); w = m[h]; If[w==0, m[h] = 1; c++; If[w==1, m[h] = 2; c--]]]]; c]; a /@ Range[0, 80] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)