A306438 Number of non-crossing set partitions whose block sizes are the prime indices of n.
1, 1, 1, 1, 1, 3, 1, 1, 2, 4, 1, 6, 1, 5, 5, 1, 1, 10, 1, 10, 6, 6, 1, 10, 3, 7, 5, 15, 1, 30, 1, 1, 7, 8, 7, 30, 1, 9, 8, 20, 1, 42, 1, 21, 21, 10, 1, 15, 4, 21, 9, 28, 1, 35, 8, 35, 10, 11, 1, 105, 1, 12, 28, 1, 9, 56, 1, 36, 11, 56, 1, 70, 1, 13, 28, 45, 9
Offset: 1
Keywords
Examples
The a(18) = 10 non-crossing set partitions of type (2, 2, 1) are: {{1},{2,3},{4,5}} {{1},{2,5},{3,4}} {{1,2},{3},{4,5}} {{1,2},{3,4},{5}} {{1,2},{3,5},{4}} {{1,3},{2},{4,5}} {{1,4},{2,3},{5}} {{1,5},{2},{3,4}} {{1,5},{2,3},{4}} {{1,5},{2,4},{3}} Missing from this list are the following crossing set partitions: {{1},{2,4},{3,5}} {{1,3},{2,4},{5}} {{1,3},{2,5},{4}} {{1,4},{2},{3,5}} {{1,4},{2,5},{3}}
Links
- Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 333-350 (1972).
- Wikipedia, Noncrossing partition.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[If[n==1,1,With[{y=primeMS[n]},Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}]]],{n,80}]
Formula
a(n) = falling(m, k - 1)/Product_i (y)_i! where m is the sum of parts (A056239(n)), k is the number of parts (A001222(n)), y is the integer partition with Heinz number n (row n of A296150), (y)_i is the number of i's in y, and falling(x, y) is the falling factorial x(x - 1)(x - 2) ... (x - y + 1) [Kreweras].
Comments