cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A000699 Number of irreducible chord diagrams with 2n nodes.

Original entry on oeis.org

1, 1, 1, 4, 27, 248, 2830, 38232, 593859, 10401712, 202601898, 4342263000, 101551822350, 2573779506192, 70282204726396, 2057490936366320, 64291032462761955, 2136017303903513184, 75197869250518812754, 2796475872605709079512, 109549714522464120960474, 4509302910783496963256400, 194584224274515194731540740
Offset: 0

Views

Author

Keywords

Comments

Perturbation expansion in quantum field theory: spinor case in 4 spacetime dimensions.
a(n)*2^(-n) is the coefficient of the x^(2*n-1) term in the series reversal of the asymptotic expansion of 2*DawsonF(x) = sqrt(Pi)*exp(-x^2)*erfi(x) for x -> inf. - Vladimir Reshetnikov, Apr 23 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
A set partition is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...},{...z...t...}} for some x < z < y < t or z < x < t < y. Then a(n) is the number of topologically connected 2-uniform set partitions of {1...2n}. See my links for examples. - Gus Wiseman, Feb 23 2019
From Julien Courtiel, Oct 09 2024: (Start)
a(n) is the number of rooted bridgeless combinatorial maps with n edges (genus is not fixed). A map is bridgeless if it has no edge whose removal disconnects the graph. For example, for n=2, there are 4 bridgeless maps with 2 edges: 2 planar maps with 1 vertex (either two consecutive loops, or two nested loops), 1 toric map with 1 vertex, and 1 planar map with 2 vertices connected by a double edge.
Also, a(n) is the number of trees with n edges equipped with a binary tubing. A tube is a connected subgraph. A binary tubing of a tree is a nested set collection S of tubes such that 1. S contains the tube of all vertices 2. Every tube of S is either reduced to one vertex, or it can be can partitioned by 2 tubes of S.
(End)

Examples

			a(31)=627625976637472254550352492162870816129760 was computed using Kreimer's Hopf algebra of rooted trees. It subsumes 2.6*10^21 terms in quantum field theory.
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2830*x^6 +...
where d/dx (A(x) - 1)^2/x = 1 + 4*x + 27*x^2 + 248*x^3 + 2830*x^4 +...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Cf. A004300, A051862, A212273. Column sums of A232223. First column of A322402.

Programs

  • Maple
    A000699 := proc(n)
        option remember;
        if n <= 1 then
            1;
        else
            add((2*i-1)*procname(i)*procname(n-i),i=1..n-1) ;
        end if;
    end proc:
    seq(A000699(n),n=0..30) ; # R. J. Mathar, Jun 12 2018
  • Mathematica
    terms = 22; A[] = 0; Do[A[x] = x + x^2 * D[A[x]^2/x, x] + O[x]^(terms+1) // Normal, terms]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Apr 06 2012, after Paul D. Hanna, updated Jan 11 2018 *)
    a = ConstantArray[0,20]; a[[1]]=1; Do[a[[n]] = (n-1)*Sum[a[[i]]*a[[n-i]],{i,1,n-1}],{n,2,20}]; a (* Vaclav Kotesovec, Feb 22 2014 *)
    Module[{max = 20, s}, s = InverseSeries[ComplexExpand[Re[Series[2 DawsonF[x], {x, Infinity, 2 max + 1}]]]]; Table[SeriesCoefficient[s, 2 n - 1] 2^n, {n, 1, max}]] (* Vladimir Reshetnikov, Apr 23 2016 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=1+x+x^2*deriv((A-1)^2/x)+x*O(x^n)); polcoeff(A, n)} \\ Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
    
  • PARI
    {a(n) = my(A); A = 1+O(x) ; for( i=0, n, A = 1+x + (A-1)*(2*x*A' - A + 1)); polcoeff(A, n)}; /* Michael Somos, May 12 2012 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020] */
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(22)  \\ Gheorghe Coserea, Jan 22 2017
    
  • PARI
    seq(n)={my(g=serlaplace(1 / sqrt(1 - 2*x + O(x*x^n)))); Vec(sqrt((x/serreverse( x*g^2 ))))} \\ Andrew Howroyd, Nov 21 2024
    
  • Python
    def A000699_list(n):
        list = [1, 1] + [0] * (n - 1)
        for i in range(2, n + 1):
            list[i] = (i - 1) * sum(list[j] * list[i - j] for j in range(1, i))
        return list
    print(A000699_list(22)) # M. Eren Kesim, Jun 23 2021

Formula

a(n) = (n-1)*Sum_{i=1..n-1} a(i)*a(n-i) for n > 1, with a(1) = a(0) = 1. [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
A212273(n) = n * a(n). - Michael Somos, May 12 2012
G.f. satisfies: A(x) = 1 + x + x^2*[d/dx (A(x) - 1)^2/x]. - Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
a(n) ~ n^n * 2^(n+1/2) / exp(n+1) * (1 - 31/(24*n) - 2207/(1152*n^2) - 3085547/(414720*n^3) - 1842851707/(39813120*n^4) - ...). - Vaclav Kotesovec, Feb 22 2014, extended Oct 23 2017
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2*x/(A(x) - 3*x/(A(x) - 4*x/(A(x) - 5*x/(A(x) - ...))))), a continued fraction relation. - Paul D. Hanna, Nov 04 2020
G.f. A(x) satisfies: A(x*B(x)^2) = B(x) where B(x) is the g.f. of A001147. - Andrew Howroyd, Nov 21 2024

Extensions

More terms from David Broadhurst, Dec 14 1999
Inserted "chord" in definition. - N. J. A. Sloane, Jan 19 2017
Added a(0)=1. - N. J. A. Sloane, Nov 05 2020
Modified formulas slightly to include a(0) = 1. - Paul D. Hanna, Nov 06 2020

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A099947 Number of topologically connected set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 21, 85, 385, 1907, 10205, 58455, 355884, 2290536, 15518391, 110283179, 819675482, 6355429550, 51293023347, 430062712439, 3739408304962, 33665192703946, 313354708842791, 3011545611755271, 29847401178719637, 304713973031878687, 3201007359886598431
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y. - Gus Wiseman, Feb 19 2019

Examples

			O.g.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 21*x^6 + 85*x^7 +...
From _Paul D. Hanna_, Apr 16 2013: (Start)
The o.g.f. satisfies
(1) A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 5*x^3/A(x)^3 + 15*x^4/A(x)^4 + 52*x^5/A(x)^5 + 203*x^6/A(x)^6 + ... + A000110(n)*x^n/A(x)^n + ...
(2) A(x) = 1 + x/(A(x)-x) + x^2/((A(x)-x)*(A(x)-2*x)) + x^3/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)) + x^4/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)*(A(x)-4*x)) + ... (End)
From _Gus Wiseman_, Feb 19 2019: (Start)
The a(1) = 1 through a(6) = 21 topologically connected set partitions:
  {{1}}  {{12}}  {{123}}  {{1234}}    {{12345}}    {{123456}}
                          {{13}{24}}  {{124}{35}}  {{1235}{46}}
                                      {{13}{245}}  {{124}{356}}
                                      {{134}{25}}  {{1245}{36}}
                                      {{135}{24}}  {{1246}{35}}
                                      {{14}{235}}  {{125}{346}}
                                                   {{13}{2456}}
                                                   {{134}{256}}
                                                   {{1345}{26}}
                                                   {{1346}{25}}
                                                   {{135}{246}}
                                                   {{1356}{24}}
                                                   {{136}{245}}
                                                   {{14}{2356}}
                                                   {{145}{236}}
                                                   {{146}{235}}
                                                   {{15}{2346}}
                                                   {{13}{25}{46}}
                                                   {{14}{25}{36}}
                                                   {{14}{26}{35}}
                                                   {{15}{24}{36}}
(End)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A = 1 + x}, For[i = 1, i <= n, i++, A = Sum[x^m/Product[A - k*x + x*O[x]^n, {k, 1, m}], {m, 0, n}]]; Coefficient[A, x^n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 13 2013, after Paul D. Hanna *)
    nn=8;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Solve[Table[BellB[n]==Sum[Product[a[Length[s]],{s,stn}],{stn,Select[sps[Range[n]],nonXQ]}],{n,nn}],Array[a,nn]] (* Gus Wiseman, Feb 19 2019 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff( x/serreverse(x*serlaplace(exp(exp(x+x*O(x^n))-1))), n))} /* Michael Somos, Sep 22 2005 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/prod(k=1, m, A - k*x +x*O(x^n)) )); polcoeff(A, n)} \\ Paul D. Hanna, Apr 16 2013

Formula

From Paul D. Hanna, Apr 16 2013: (Start)
O.g.f. A(x) satisfies
(1) A(x) = Sum_{n>=0} A000110(n)*x^n/A(x)^n, where A000110 are the Bell numbers.
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (A(x) - k*x).
(3) A(x) = 1/(1 - x/(A(x) - 1*x/(1 - x/(A(x) - 2*x/(1 - x/(A(x) - 3*x/(1 - x/(A(x) - 4*x/(1 - x/(A(x) - ... )))))))))), a continued fraction. (End)
B(n) = Sum_p Product_{s in p} a(|s|) where p is a non-crossing set partition of {1,...,n} and B = A000110. In words, every set partition of {1,...,n} can be uniquely decomposed as a non-crossing set partition together with a topologically connected set partition of each block. - Gus Wiseman, Feb 19 2019

Extensions

Name edited by Gus Wiseman, Feb 19 2019

A134264 Coefficients T(j, k) of a partition transform for Lagrange compositional inversion of a function or generating series in terms of the coefficients of the power series for its reciprocal. Enumeration of noncrossing partitions and primitive parking functions. T(n,k) for n >= 1 and 1 <= k <= A000041(n-1), an irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 3, 15, 30, 5, 20, 30, 15, 1, 1, 7, 7, 7, 21, 42, 21, 21, 35, 105, 35, 35, 70, 21, 1, 1, 8, 8, 8, 4, 28, 56, 56, 28, 28, 56, 168, 84, 168, 14, 70, 280, 140, 56, 140, 28, 1, 1, 9, 9, 9, 9, 36, 72
Offset: 1

Views

Author

Tom Copeland, Jan 14 2008

Keywords

Comments

Coefficients are listed in Abramowitz and Stegun order (A036036).
Given an invertible function f(t) analytic about t=0 (or a formal power series) with f(0)=0 and Df(0) not equal to 0, form h(t) = t / f(t) and let h_n denote the coefficient of t^n in h(t).
Lagrange inversion gives the compositional inverse about t=0 as g(t) = Sum_{j>=1} ( t^j * (1/j) * Sum_{permutations s with s(1) + s(2) + ... + s(j) = j - 1} h_s(1) * h_s(2) * ... * h_s(j) ) = t * T(1,1) * h_0 + Sum_{j>=2} ( t^j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) ), where H(j-1,k ; h_0,h_1,...) is the k-th partition for h_1 through h_(j-1) corresponding to n=j-1 on page 831 of Abramowitz and Stegun (ordered as in A&S) with (h_0)^(j-m)=(h_0)^(n+1-m) appended to each partition subsumed under n and m of A&S.
Denoting h_n by (n') for brevity, to 8th order in t,
g(t) = t * (0')
+ t^2 * [ (0') (1') ]
+ t^3 * [ (0')^2 (2') + (0') (1')^2 ]
+ t^4 * [ (0')^3 (3') + 3 (0')^2 (1') (2') + (0') (1')^3 ]
+ t^5 * [ (0')^4 (4') + 4 (0')^3 (1') (3') + 2 (0')^3 (2')^2 + 6 (0')^2 (1')^2 (2') + (0') (1')^4 ]
+ t^6 * [ (0')^5 (5') + 5 (0')^4 (1') (4') + 5 (0')^4 (2') (3') + 10 (0')^3 (1')^2 (3') + 10 (0')^3 (1') (2')^2 + 10 (0')^2 (1')^3 (2') + (0') (1')^5 ]
+ t^7 * [ (0')^6 (6') + 6 (0')^5 (1') (5') + 6 (0')^5 (2') (4') + 3 (0')^5 (3')^2 + 15 (0')^4 (1')^2 (4') + 30 (0')^4 (1') (2') (3') + 5 (0')^4 (2')^3 + 20 (0')^3 (1')^3 (3') + 30 (0')^3 (1')^2 (2')^2 + 15 (0')^2 (1')^4 (2') + (0') (1')^6]
+ t^8 * [ (0')^7 (7') + 7 (0')^6 (1') (6') + 7 (0')^6 (2') (5') + 7 (0')^6 (3') (4') + 21 (0')^5 (1')^2* (5') + 42 (0')^5 (1') (2') (4') + 21 (0')^5 (1') (3')^2 + 21 (0')^5 (2')^2 (3') + 35 (0')^4 (1')^3 (4') + 105 (0)^4 (1')^2 (2') (3') + 35 (0')^4 (1') (2')^3 + 35 (0')^3 (1')^4 (3') + 70 (0')^3 (1')^3 (2')^2 + 21 (0')^2 (1')^5 (2') + (0') (1')^7 ]
+ ..., where from the formula section, for example, T(8,1',2',...,7') = 7! / ((8 - (1'+ 2' + ... + 7'))! * 1'! * 2'! * ... * 7'!) are the coefficients of the integer partitions (1')^1' (2')^2' ... (7')^7' in the t^8 term.
A125181 is an extended, reordered version of the above sequence, omitting the leading 1, with alternate interpretations.
If the coefficients of partitions with the same exponent for h_0 are summed within rows, A001263 is obtained, omitting the leading 1.
From identification of the elements of the inversion with those on page 25 of the Ardila et al. link, the coefficients of the irregular table enumerate non-crossing partitions on [n]. - Tom Copeland, Oct 13 2014
From Tom Copeland, Oct 28-29 2014: (Start)
Operating with d/d(1') = d/d(h_1) on the n-th partition polynomial Prt(n;h_0,h_1,..,h_n) in square brackets above associated with t^(n+1) generates n * Prt(n-1;h_0,h_1,..,h_(n-1)); therefore, the polynomials are an Appell sequence of polynomials in the indeterminate h_1 when h_0=1 (a special type of Sheffer sequence).
Consequently, umbrally, [Prt(.;1,x,h_2,..) + y]^n = Prt(n;1,x+y,h_2,..); that is, Sum_{k=0..n} binomial(n,k) * Prt(k;1,x,h_2,..) * y^(n-k) = Prt(n;1,x+y,h_2,..).
Or, e^(x*z) * exp[Prt(.;1,0,h_2,..) * z] = exp[Prt(.;1,x,h_2,..) * z]. Then with x = h_1 = -(1/2) * d^2[f(t)]/dt^2 evaluated at t=0, the formal Laplace transform from z to 1/t of this expression generates g(t), the comp. inverse of f(t), when h_0 = 1 = df(t)/dt eval. at t=0.
I.e., t / (1 - t*(x + Prt(.;1,0,h_2,..))) = t / (1 - t*Prt(.;1,x,h_2,..)) = g(t), interpreted umbrally, when h_0 = 1.
(End)
Connections to and between arrays associated to the Catalan (A000108 and A007317), Riordan (A005043), Fibonacci (A000045), and Fine (A000957) numbers and to lattice paths, e.g., the Motzkin, Dyck, and Łukasiewicz, can be made explicit by considering the inverse in x of the o.g.f. of A104597(x,-t), i.e., f(x) = P(Cinv(x),t-1) = Cinv(x) / (1 + (t-1)*Cinv(x)) = x*(1-x) / (1 + (t-1)*x*(1-x)) = (x-x^2) / (1 + (t-1)*(x-x^2)), where Cinv(x) = x*(1-x) is the inverse of C(x) = (1 - sqrt(1-4*x)) / 2, a shifted o.g.f. for the Catalan numbers, and P(x,t) = x / (1+t*x) with inverse Pinv(x,t) = -P(-x,t) = x / (1-t*x). Then h(x,t) = x / f(x,t) = x * (1+(t-1)Cinv(x)) / Cinv(x) = 1 + t*x + x^2 + x^3 + ..., i.e., h_1=t and all other coefficients are 1, so the inverse of f(x,t) in x, which is explicitly in closed form finv(x,t) = C(Pinv(x,t-1)), is given by A091867, whose coefficients are sums of the refined Narayana numbers above obtained by setting h_1=(1')=t in the partition polynomials and all other coefficients to one. The group generators C(x) and P(x,t) and their inverses allow associations to be easily made between these classic number arrays. - Tom Copeland, Nov 03 2014
From Tom Copeland, Nov 10 2014: (Start)
Inverting in x with t a parameter, let F(x;t,n) = x - t*x^(n+1). Then h(x) = x / F(x;t,n) = 1 / (1-t*x^n) = 1 + t*x^n + t^2*x^(2n) + t^3*x^(3n) + ..., so h_k vanishes unless k = m*n with m an integer in which case h_k = t^m.
Finv(x;t,n) = Sum_{j>=0} {binomial((n+1)*j,j) / (n*j + 1)} * t^j * x^(n*j + 1), which gives the Catalan numbers for n=1, and the Fuss-Catalan sequences for n>1 (see A001764, n=2). [Added braces to disambiguate the formula. - N. J. A. Sloane, Oct 20 2015]
This relation reveals properties of the partitions and sums of the coefficients of the array. For n=1, h_k = t^k for all k, implying that the row sums are the Catalan numbers. For n = 2, h_k for k odd vanishes, implying that there are no blocks with only even-indexed h_k on the even-numbered rows and that only the blocks containing only even-sized bins contribute to the odd-row sums giving the Fuss-Catalan numbers for n=2. And so on, for n > 2.
These relations are reflected in any combinatorial structures enumerated by this array and the partitions, such as the noncrossing partitions depicted for a five-element set (a pentagon) in Wikipedia.
(End)
From Tom Copeland, Nov 12 2014: (Start)
An Appell sequence possesses an umbral inverse sequence (cf. A249548). The partition polynomials here, Prt(n;1,h_1,...), are an Appell sequence in the indeterminate h_1=u, so have an e.g.f. exp[Prt(.;1,u,h_2...)*t] = e^(u*t) * exp[Prt(.;1,0,h2,...)*t] with umbral inverses with an e.g.f e^(-u*t) / exp[Prt(.;1,0,h2,...)*t]. This makes contact with the formalism of A133314 (cf. also A049019 and A019538) and the signed, refined face partition polynomials of the permutahedra (or their duals), which determine the reciprocal of exp[Prt(.,0,u,h2...)*t] (cf. A249548) or exp[Prt(.;1,u,h2,...)*t], forming connections among the combinatorics of permutahedra and the noncrossing partitions, Dyck paths and trees (cf. A125181), and many other important structures isomorphic to the partitions of this entry, as well as to formal cumulants through A127671 and algebraic structures of Lie algebras. (Cf. relationship of permutahedra with the Eulerians A008292.)
(End)
From Tom Copeland, Nov 24 2014: (Start)
The n-th row multiplied by n gives the number of terms in the homogeneous symmetric monomials generated by [x(1) + x(2) + ... + x(n+1)]^n under the umbral mapping x(m)^j = h_j, for any m. E.g., [a + b + c]^2 = [a^2 + b^2 + c^2] + 2 * [a*b + a*c + b*c] is mapped to [3 * h_2] + 2 * [3 * h_1^2], and 3 * A134264(3) = 3 *(1,1)= (3,3) the number of summands in the two homogeneous polynomials in the square brackets. For n=3, [a + b + c + d]^3 = [a^3 + b^3 + ...] + 3 [a*b^2 + a*c^2 + ...] + 6 [a*b*c + a*c*d + ...] maps to [4 * h_3] + 3 [12 * h_1 * h_2] + 6 [4 * (h_1)^3], and the number of terms in the brackets is given by 4 * A134264(4) = 4 * (1,3,1) = (4,12,4).
The further reduced expression is 4 h_3 + 36 h_1 h_2 + 24 (h_1)^3 = A248120(4) with h_0 = 1. The general relation is n * A134264(n) = A248120(n) / A036038(n-1) where the arithmetic is performed on the coefficients of matching partitions in each row n.
Abramowitz and Stegun give combinatorial interpretations of A036038 and relations to other number arrays.
This can also be related to repeated umbral composition of Appell sequences and topology with the Bernoulli numbers playing a special role. See the Todd class link.
(End)
These partition polynomials are dubbed the Voiculescu polynomials on page 11 of the He and Jejjala link. - Tom Copeland, Jan 16 2015
See page 5 of the Josuat-Verges et al. reference for a refinement of these partition polynomials into a noncommutative version composed of nondecreasing parking functions. - Tom Copeland, Oct 05 2016
(Per Copeland's Oct 13 2014 comment.) The number of non-crossing set partitions whose block sizes are the parts of the n-th integer partition, where the ordering of integer partitions is first by total, then by length, then lexicographically by the reversed sequence of parts. - Gus Wiseman, Feb 15 2019
With h_0 = 1 and the other h_n replaced by suitably signed partition polynomials of A263633, the refined face partition polynomials for the associahedra of normalized A133437 with a shift in indices are obtained (cf. In the Realm of Shadows). - Tom Copeland, Sep 09 2019
Number of primitive parking functions associated to each partition of n. See Lemma 3.8 on p. 28 of Rattan. - Tom Copeland, Sep 10 2019
With h_n = n + 1, the d_k (A006013) of Table 2, p. 18, of Jong et al. are obtained, counting the n-point correlation functions in a quantum field theory. - Tom Copeland, Dec 25 2019
By inspection of the diagrams on Robert Dickau's website, one can see the relationship between the monomials of this entry and the connectivity of the line segments of the noncrossing partitions. - Tom Copeland, Dec 25 2019
Speicher has examples of the first four inversion partition polynomials on pp. 22 and 23 with his k_n equivalent to h_n = (n') here with h_0 = 1. Identifying z = t, C(z) = t/f(t) = h(t), and M(z) = f^(-1)(t)/t, then statement (3), on p. 43, of Theorem 3.26, C(z M(z)) = M(z), is equivalent to substituting f^(-1)(t) for t in t/f(t), and statement (4), M(z/C(z)) = C(z), to substituting f(t) for t in f^(-1)(t)/t. - Tom Copeland, Dec 08 2021
Given a Laurent series of the form f(z) = 1/z + h_1 + h_2 z + h_3 z^2 + ..., the compositional inverse is f^(-1)(z) = 1/z + Prt(1;1,h_1)/z^2 + Prt(2;1,h_1,h_2)/z^3 + ... = 1/z + h_1/z^2 + (h_1^2 + h_2)/z^3 + (h_1^3 + 3 h_1 h_2 + h_3)/z^4 + (h_1^4 + 6 h_1^2 h_2 + 4 h_1 h_3 + 2 h_2^2 + h_4)/z^5 + ... for which the polynomials in the numerators are the partition polynomials of this entry. For example, this formula applied to the q-expansion of Klein's j-invariant / function with coefficients A000521, related to monstrous moonshine, gives the compositional inverse with the coefficients A091406 (see He and Jejjala). - Tom Copeland, Dec 18 2021
The partition polynomials of A350499 'invert' the polynomials of this entry giving the indeterminates h_n. A multinomial formula for the coefficients of the partition polynomials of this entry, equivalent to the multinomial formula presented in the first four sentences of the formula section below, is presented in the MathOverflow question referenced in A350499. - Tom Copeland, Feb 19 2022

Examples

			1) With f(t) = t / (t-1), then h(t) = -(1-t), giving h_0 = -1, h_1 = 1 and h_n = 0 for n>1. Then g(t) = -t - t^2 - t^3 - ... = t / (t-1).
2) With f(t) = t*(1-t), then h(t) = 1 / (1-t), giving h_n = 1 for all n. The compositional inverse of this f(t) is g(t) = t*A(t) where A(t) is the o.g.f. for the Catalan numbers; therefore the sum over k of T(j,k), i.e., the row sum, is the Catalan number A000108(j-1).
3) With f(t) = (e^(-a*t)-1) / (-a), h(t) = Sum_{n>=0} Bernoulli(n) * (-a*t)^n / n! and g(t) = log(1-a*t) / (-a) = Sum_{n>=1} a^(n-1) * t^n / n. Therefore with h_n = Bernoulli(n) * (-a)^n / n!, Sum_{permutations s with s(1)+s(2)+...+s(j)=j-1} h_s(1) * h_s(2) * ... * h_s(j) = j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) = a^(j-1). Note, in turn, Sum_{a=1..m} a^(j-1) = (Bernoulli(j,m+1) - Bernoulli(j)) / j for the Bernoulli polynomials and numbers, for j>1.
4) With f(t,x) = t / (x-1+1/(1-t)), then h(t,x) = x-1+1/(1-t), giving (h_0)=x and (h_n)=1 for n>1. Then g(t,x) = (1-(1-x)*t-sqrt(1-2*(1+x)*t+((x-1)*t)^2)) / 2, a shifted o.g.f. in t for the Narayana polynomials in x of A001263.
5) With h(t)= o.g.f. of A075834, but with A075834(1)=2 rather than 1, which is the o.g.f. for the number of connected positroids on [n] (cf. Ardila et al., p. 25), g(t) is the o.g.f. for A000522, which is the o.g.f. for the number of positroids on [n]. (Added Oct 13 2014 by author.)
6) With f(t,x) = x / ((1-t*x)*(1-(1+t)*x)), an o.g.f. for A074909, the reverse face polynomials of the simplices, h(t,x) = (1-t*x) * (1-(1+t)*x) with h_0=1, h_1=-(1+2*t), and h_2=t*(1+t), giving as the inverse in x about 0 the o.g.f. (1+(1+2*t)*x-sqrt(1+(1+2*t)*2*x+x^2)) / (2*t*(1+t)*x) for signed A033282, the reverse face polynomials of the Stasheff polytopes, or associahedra. Cf. A248727. (Added Jan 21 2015 by author.)
7) With f(x,t) = x / ((1+x)*(1+t*x)), an o.g.f. for the polynomials (-1)^n * (1 + t + ... + t^n), h(t,x) = (1+x) * (1+t*x) with h_0=1, h_1=(1+t), and h_2=t, giving as the inverse in x about 0 the o.g.f. (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2)) / (2*x*t) for the Narayana polynomials A001263. Cf. A046802. (Added Jan 24 2015 by author.)
From _Gus Wiseman_, Feb 15 2019: (Start)
Triangle begins:
   1
   1
   1   1
   1   3   1
   1   4   2   6   1
   1   5   5  10  10  10   1
   1   6   6   3  15  30   5  20  30  15   1
   1   7   7   7  21  42  21  21  35 105  35  35  70  21   1
Row 5 counts the following non-crossing set partitions:
  {{1234}}  {{1}{234}}  {{12}{34}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
            {{123}{4}}  {{14}{23}}  {{1}{23}{4}}
            {{124}{3}}              {{12}{3}{4}}
            {{134}{2}}              {{1}{24}{3}}
                                    {{13}{2}{4}}
                                    {{14}{2}{3}}
(End)
		

References

  • A. Nica and R. Speicher (editors), Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series: 335, Cambridge University Press, 2006 (see in particular, Eqn. 9.14 on p. 141, enumerating noncrossing partitions).

Crossrefs

(A001263,A119900) = (reduced array, associated g(x)). See A145271 for meaning and other examples of reduced and associated.
Other orderings are A125181 and A306438.
Cf. A119900 (e.g.f. for reduced W(x) with (h_0)=t and (h_n)=1 for n>0).
Cf. A248927 and A248120, "scaled" versions of this Lagrange inversion.
Cf. A091867 and A125181, for relations to lattice paths and trees.
Cf. A249548 for use of Appell properties to generate the polynomials.
Cf. A133314, A049019, A019538, A127671, and A008292 for relations to permutahedra, Eulerians.
Cf. A006013.

Programs

  • Mathematica
    Table[Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}],{n,7},{y,Sort[Sort/@IntegerPartitions[n]]}] (* Gus Wiseman, Feb 15 2019 *)
  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); n!/((n-#v+1)!*prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!))}
    row(n)=[C(Vec(p)) | p<-partitions(n-1)]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022

Formula

For j>1, there are P(j,m;a...) = j! / [ (j-m)! (a_1)! (a_2)! ... (a_(j-1))! ] permutations of h_0 through h_(j-1) in which h_0 is repeated (j-m) times; h_1, repeated a_1 times; and so on with a_1 + a_2 + ... + a_(j-1) = m.
If, in addition, a_1 + 2 * a_2 + ... + (j-1) * a_(j-1) = j-1, then each distinct combination of these arrangements is correlated with a partition of j-1.
T(j,k) is [ P(j,m;a...) / j ] for the k-th partition of j-1 as described in the comments.
For example from g(t) above, T(5,4) = (5! / ((5-3)! * 2!)) / 5 = 6 for the 4th partition under n=5-1=4 with m=3 parts in A&S.
From Tom Copeland, Sep 30 2011: (Start)
Let W(x) = 1/(df(x)/dx)= 1/{d[x/h(x)]/dx}
= [(h_0)-1+:1/(1-h.*x):]^2 / {(h_0)-:[h.x/(1-h.x)]^2:}
= [(h_0)+(h_1)x+(h_2)x^2+...]^2 / [(h_0)-(h_2)x^2-2(h_3)x^3-3(h_4)x^4-...], where :" ": denotes umbral evaluation of the expression within the colons and h. is an umbral coefficient.
Then for the partition polynomials of A134264,
Poly[n;h_0,...,h_(n-1)]=(1/n!)(W(x)*d/dx)^n x, evaluated at x=0, and the compositional inverse of f(t) is g(t) = exp(t*W(x)*d/dx) x, evaluated at x=0. Also, dg(t)/dt = W(g(t)), and g(t) gives A001263 with (h_0)=u and (h_n)=1 for n>0 and A000108 with u=1.
(End)
From Tom Copeland, Oct 20 2011: (Start)
With exp(x* PS(.,t)) = exp(t*g(x)) = exp(x*W(y)d/dy) exp(t*y) eval. at y=0, the raising (creation) and lowering (annihilation) operators defined by R PS(n,t) = PS(n+1,t) and L PS(n,t) = n*PS(n-1,t) are
R = t*W(d/dt) = t*((h_0) + (h_1)d/dt + (h_2)(d/dt)^2 + ...)^2 / ((h_0) - (h_2)(d/dt)^2 - 2(h_3)(d/dt)^3 - 3(h_4)(d/dt)^4 + ...), and
L = (d/dt)/h(d/dt) = (d/dt) 1/((h_0) + (h_1)*d/dt + (h_2)*(d/dt)^2 + ...)
Then P(n,t) = (t^n/n!) dPS(n,z)/dz eval. at z=0 are the row polynomials of A134264. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.)
(End)
Using the formalism of A263634, the raising operator for the partition polynomials of this array with h_0 = 1 begins as R = h_1 + h_2 D + h_3 D^2/2! + (h_4 - h_2^2) D^3/3! + (h_5 - 5 h_2 h_3) D^4/4! + (h_6 + 5 h_2^3 - 7 h_3^2 - 9 h_2 h_4) D^5/5! + (h_7 - 14 h_2 h_5 + 56 h_2^2 h_3) D^6/6! + ... with D = d/d(h_1). - Tom Copeland, Sep 09 2016
Let h(x) = x/f^{-1}(x) = 1/[1-(c_2*x+c_3*x^2+...)], with c_n all greater than zero. Then h_n are all greater than zero and h_0 = 1. Determine P_n(t) from exp[t*f^{-1}(x)] = exp[x*P.(t)] with f^{-1}(x) = x/h(x) expressed in terms of the h_n (cf. A133314 and A263633). Then P_n(b.) = 0 gives a recursion relation for the inversion polynomials of this entry a_n = b_n/n! in terms of the lower order inversion polynomials and P_j(b.)P_k(b.) = P_j(t)P_k(t)|{t^n = b_n} = d{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)]. - Tom Copeland, Feb 09 2018
A raising operator for the partition polynomials with h_0 = 1 regarded as a Sheffer Appell sequence in h_1 is described in A249548. - Tom Copeland, Jul 03 2018

Extensions

Added explicit t^6, t^7, and t^8 polynomials and extended initial table to include the coefficients of t^8. - Tom Copeland, Sep 14 2016
Title modified by Tom Copeland, May 28 2018
More terms from Gus Wiseman, Feb 15 2019
Title modified by Tom Copeland, Sep 10 2019

A324169 Number of labeled graphs covering the vertex set {1,...,n} with no crossing edges.

Original entry on oeis.org

1, 0, 1, 4, 25, 176, 1353, 11012, 93329, 815104, 7285489, 66324644, 612863337, 5733381616, 54195878137, 516852285668, 4966883732129, 48049936644736, 467566946973537, 4573486005681092, 44942852084894777, 443484037981300144, 4392621673072766505
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

Two edges {x,y}, {z,t} are crossing if either x < z < y < t or z < x < t < y. If the vertices are arranged in a circle, this is equivalent to crossing of chords.
Covering means there are no isolated vertices.

Crossrefs

Cf. A000108, A000124, A001006, A001764, A003465, A007297 (connected case), A016098, A054726 (non-crossing graphs), A099947, A306438.

Programs

  • Mathematica
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)=Vec((2 + 7*x + 3*x^2 - x*sqrt(1 - 10*x - 7*x^2 + O(x^n)))/(2*(1 + x)^3)) \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A054726.
G.f.: (2 + 7*x + 3*x^2 - x*sqrt(1 - 10*x - 7*x^2))/(2*(1 + x)^3). - Andrew Howroyd, Jan 20 2023

A136653 G.f.: A(x) satisfies: coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 4, 39, 748, 27162, 1880872, 252273611, 66358216668, 34506398937158, 35644762692112792, 73356520492898454022, 301274559225693420690360, 2471654510727312089903896948, 40527708183358718551543295827536, 1328579216048284168977214446788083699
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2008

Keywords

Comments

a(n) is the number of graphs on vertices 1,...,n such that, when these vertices are arranged counterclockwise around a circle and edges are drawn as straight line segments, the resulting diagram is connected. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010
In this interpretation, both intersecting (set theoretically) and crossing (topologically) edges are considered connected. - Gus Wiseman, Feb 23 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 39*x^4 + 748*x^5 + 27162*x^6 +...
Let F(x) = 1 + x + 2*x^2 + 8*x^3 + 64*x^4 + 1024*x^5 +...+ 2^(n*(n-1)/2)*x^n +..
then A(x) = F(x/A(x)), A(x*F(x)) = F(x).
Coefficient of x^n in A(x)^(n+1)/(n+1) = 2^(n*(n-1)/2),
as can be seen by the main diagonal in the array of
coefficients in the initial powers of A(x):
A^1: [(1), 1, 1, 4, 39, 748, 27162, 1880872, 252273611,...;
A^2: [1, (2), 3, 10, 87, 1582, 55914, 3817876, 508370795,...;
A^3: [1, 3, (6), 19, 147, 2517, 86398, 5813550, 768378627,...;
A^4: [1, 4, 10, (32), 223, 3572, 118778, 7870640, 1032387787,...;
A^5: [1, 5, 15, 50, (320), 4771, 153245, 9992130, 1300492845,...;
A^6: [1, 6, 21, 74, 444, (6144), 190023, 12181278, 1572792585,...;
A^7: [1, 7, 28, 105, 602, 7728, (229376), 14441659, 1849390375,...;
A^8: [1, 8, 36, 144, 802, 9568, 271616, (16777216), 2130394591,...;
A^9: [1, 9, 45, 192, 1053, 11718, 317112, 19192320, (2415919104),...;
dividing each diagonal term in row n by (n+1) gives 2^(n*(n-1)/2).
The diagonal above the main diagonal gives coefficients of l.g.f.:
log(F(x)) = x + 3*x^2/2 + 19*x^3/3 + 223*x^4/4 + 4771*x^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    max = 15; s = x*Sum[2^(k*(k-1)/2)*x^k, {k, 0, max}] + O[x]^(max+2); x/InverseSeries[s] + O[x]^(max+1) // CoefficientList[#, x]& (* Jean-François Alcover, Sep 03 2017 *)
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bicmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],Intersection@@#!={}&],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[bicmpts[#]]<=1]&]],{n,0,5}] (* Gus Wiseman, Feb 23 2019 *)
  • PARI
    a(n)=polcoeff(x/serreverse(x*sum(k=0,n,2^(k*(k-1)/2)*x^k +x*O(x^n))),n)

Formula

G.f.: A(x) = x/Series_Reversion( x*Sum_{k=0..n} 2^(k(k-1)/2)*x^k ).
Equals the free cumulant sequence corresponding to A006125. - Jonathan Novak (j2novak(AT)math.uwaterloo.ca), Apr 30 2010

Extensions

Name changed and part of prior name moved to formula section by Paul D. Hanna, Sep 19 2013

A324172 Number of subsets of {1,...,n} that cross their complement.

Original entry on oeis.org

0, 0, 0, 0, 2, 10, 32, 84, 198, 438, 932, 1936, 3962, 8034, 16200, 32556, 65294, 130798, 261836, 523944, 1048194, 2096730, 4193840, 8388100, 16776662, 33553830, 67108212, 134217024, 268434698, 536870098, 1073740952, 2147482716, 4294966302, 8589933534, 17179868060
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

Two sets cross each other if they are of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
Also the number of verex cuts in the wheel graph on n nodes. - Eric W. Weisstein, Apr 22 2023

Examples

			The a(5) = 10 subsets are {1,3}, {1,4}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3,5}, {2,4,5}.
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    concat([0,0,0,0], Vec(2*x^4 / ((1 - x)^3*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Feb 19 2019

Formula

a(0) = 0; a(n) = 2^n - n^2 + n - 2.
a(n) = 2*A002662(n-1) for n > 0.
G.f.: 2*x^4/((1-2*x)*(1-x)^3).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4. - Colin Barker, Feb 18 2019

A324167 Number of non-crossing antichain covers of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 9, 67, 633, 6763, 77766, 938957, 11739033, 150649945, 1973059212, 26265513030, 354344889798, 4833929879517, 66568517557803, 924166526830701, 12920482325488761, 181750521972603049, 2570566932237176232, 36532394627404815308, 521439507533582646156
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(3) = 9 antichains:
  {{1,2,3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Cf. A000108, A000124, A000372 (antichains), A001006, A006126 (antichain covers), A014466, A048143, A054726 (non-crossing graphs), A099947, A261005, A283877, A306438.
Cf. A324166, A324168, A324169, A324170, A324171, A324173, A359984 (no singletons).

Programs

  • Mathematica
    nn=6;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A324168.
Binomial transform of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A324166 Number of totally crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 57, 207, 842, 3673, 17062, 84897
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is totally crossing if every pair of distinct blocks is of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			The a(6) = 18 totally crossing set partitions:
  {{1,2,3,4,5,6}}
  {{1,4,6},{2,3,5}}
  {{1,4,5},{2,3,6}}
  {{1,3,6},{2,4,5}}
  {{1,3,5},{2,4,6}}
  {{1,3,4},{2,5,6}}
  {{1,2,5},{3,4,6}}
  {{1,2,4},{3,5,6}}
  {{4,6},{1,2,3,5}}
  {{3,6},{1,2,4,5}}
  {{3,5},{1,2,4,6}}
  {{2,6},{1,3,4,5}}
  {{2,5},{1,3,4,6}}
  {{2,4},{1,3,5,6}}
  {{1,5},{2,3,4,6}}
  {{1,4},{2,3,5,6}}
  {{1,3},{2,4,5,6}}
  {{1,4},{2,5},{3,6}}
		

Crossrefs

Cf. A000108 (non-crossing partitions), A000110, A000296, A002662, A016098 (crossing partitions), A054726, A099947 (topologically connected partitions), A305854, A306006, A306418, A306438, A319752.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A125181 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n whose ascent lengths form the k-th partition of the integer n; the partitions of n are ordered in the "Mathematica" ordering.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 15, 3, 30, 20, 5, 30, 15, 1, 1, 7, 7, 21, 7, 42, 35, 21, 21, 105, 35, 35, 70, 21, 1, 1, 8, 8, 28, 8, 56, 56, 4, 56, 28, 168, 70, 28, 84, 168, 280, 56, 14, 140, 140, 28, 1, 1, 9, 9, 36, 9, 72, 84, 9, 72, 36, 252, 126, 36
Offset: 1

Views

Author

Emeric Deutsch, Nov 23 2006

Keywords

Comments

Equivalently, T(n,k) is the number of ordered trees with n edges whose node degrees form the k-th partition of the integer n.
Also the number of non-crossing set partitions whose block sizes are the parts of the n-th integer partition in graded Mathematica ordering. - Gus Wiseman, Feb 15 2019
For relations to Lagrange inversion through shifted reciprocals of a function, refined Narayana numbers, non-crossing partitions, trees, and other lattice paths, see A134264 and A091867. - Tom Copeland, Nov 01 2014

Examples

			Example: T(5,3)=5 because the 3rd partition of 5 is [3,2] and we have (UU)DD(UUU)DDD, (UUU)DDD(UU)DD, (UU)D(UUU)DDDD, (UUU)D(UU)DDDD and (UUU)DD(UU)DDD; here U=(1,1), D=(1,-1) and the ascents are shown between parentheses.
Triangle begins:
  1
  1   1
  1   3   1
  1   4   2   6   1
  1   5   5  10  10  10   1
  1   6   6  15   3  30  20   5  30  15   1
  1   7   7  21   7  42  35  21  21 105  35  35  70  21   1
Row 4 counts the following non-crossing set partitions:
  {{1234}}  {{1}{234}}  {{12}{34}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
            {{123}{4}}  {{14}{23}}  {{1}{23}{4}}
            {{124}{3}}              {{12}{3}{4}}
            {{134}{2}}              {{1}{24}{3}}
                                    {{13}{2}{4}}
                                    {{14}{2}{3}}
		

References

  • R. P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge University Press, Cambridge, 1999; Theorem 5.3.10.

Crossrefs

Programs

  • Maple
    with(combinat): for n from 1 to 9 do p:=partition(n): for q from 1 to numbpart(n) do m:=convert(p[numbpart(n)+1-q],multiset): k:=nops(p[numbpart(n)+1-q]): s[n,q]:=n!/(n-k+1)!/product(m[j][2]!,j=1..nops(m)) od: od: for n from 1 to 9 do seq(s[n,q],q=1..numbpart(n)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i, k) `if`(n=0, [k!], `if`(i<1, [],
          [seq(map(x->x*j!, b(n-i*j, i-1, k-j))[], j=0..n/i)]))
        end:
    T:= proc(n) local l, m;
          l:= b(n, n, n+1); m:=nops(l);
          seq(n!/l[m-i], i=0..m-1)
        end:
    seq(T(n), n=1..10);  # Alois P. Heinz, May 25 2013
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {k!}, If[i<1, {}, Flatten @ Table[Map[#*j! &, b[n-i*j, i-1, k-j]], {j, 0, n/i}]]]; T[n_] := Module[{l, m}, l = b[n, n, n+1]; m = Length[l]; Table[n!/l[[m-i]], {i, 0, m-1}]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
    Table[Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}],{y,Join@@Table[IntegerPartitions[n],{n,1,8}]}] (* Gus Wiseman, Feb 15 2019 *)
  • SageMath
    def C(p):
        n = sum(p); l = n - len(p) + 1
        def f(x): return factorial(len(list(filter(lambda y: y == x, p))))
        return factorial(n) // (factorial(l) * prod(f(x) for x in set(p)))
    def row(n): return list(C(p) for p in Partitions(n))
    for n in range(1, 9): print(row(n))  # Peter Luschny, Jul 14 2022

Formula

Row n has A000041(n) terms (equal to the number of partitions of n).
Row sums yield the Catalan numbers (A000108).
Given a partition p = [a(1)^e(1), ..., a(j)^e(j)] into k parts (e(1) +...+ e(j) = k), the number of Dyck paths whose ascent lengths yield the partition p is n!/[(n-k+1)!e(1)!e(2)! ... e(j)! ]. - Franklin T. Adams-Watters
Showing 1-10 of 16 results. Next