cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306472 a(n) = 37*27^n.

Original entry on oeis.org

37, 999, 26973, 728271, 19663317, 530909559, 14334558093, 387033068511, 10449892849797, 282147106944519, 7617971887502013, 205685240962554351, 5553501505988967477, 149944540661702121879, 4048502597865957290733, 109309570142380846849791, 2951358393844282864944357
Offset: 0

Views

Author

Stefano Spezia, Feb 18 2019

Keywords

Comments

x = a(n) and y = A002042(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 3^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For a(0) = 37 and A002042(0) = 7, 37^2 + 3 = 1372 = 4*7^3.
		

Crossrefs

Cf. A002042 (7*4^n), A009971 (27^n), A000290 (n^2), A000578 (n^3).

Programs

  • GAP
    List([0..20], n->37*27^n);
    
  • Magma
    [37*27^n: n in [0..20]];
    
  • Maple
    a:=n->37*27^n: seq(a(n), n=0..20);
  • Mathematica
    37*27^Range[0,20]
  • PARI
    a(n) = 37*27^n;

Formula

O.g.f.: 37/(1 - 27*x).
E.g.f.: 37*exp(27*x).
a(n) = 27*a(n-1) for n > 0.
a(n) = 37*A009971(n).