A306480 Numbers k such that A054404(k) is not floor(k/e - 1/(2*e) + 1/2).
97, 24586, 14122865, 14437880866, 23075113325617, 53123288947296842, 166496860519928411041, 681661051602157413173890, 3532450008306093939076231361, 22600996284275635202947629995722, 174979114331029936735527491233938577, 1612273088535187752419835130130200398626
Offset: 1
Keywords
Examples
A054404(97)=35 but floor(97/e - 1/(2e) + 1/2) = 36.
Links
- J. P. Gilbert and F. Mosteller, Recognizing the Maximum of a Sequence, Journal of the American Statistical Association, Vol. 61 No. 313 (1966), 35-73.
- Eric Weisstein's World of Mathematics, Sultan's Dowry Problem
- Wikipedia, Secretary problem
Programs
-
Mathematica
P[r_, n_] := If[r == 0, 1/n, r/n (PolyGamma[0, n] - PolyGamma[0, r])] in[n_] := (n - 1/2)/E + 1/2 - (3E - 1)/2/(2 n + 3E - 1) - 1 su[n_] := n/E - 1/2/E + 1/2 A054404[n_] := If[P[Floor[su[n]], n] >= P[Ceiling[in[n]], n], Floor[su[n]], Ceiling[in[n]]] lista = Select[Range[25000], ! Floor[su[#]] == Ceiling[in[#]] &]; IS[n_] := If[Floor[su[n]] == Ceiling[in[n]], False, ! (A054404[n] == Floor[su[n]])] Select[lista, IS]
Formula
Empirical observation: a(n) = (2*d(6k+3)+1)/2, where d(m) is the denominator of the truncated continued fraction [a_0;a_1,a_2,...,a_m] of 1/e. - Giovanni Corbelli, Jul 23 2021
Extensions
a(4)-a(12) from Jon E. Schoenfield, Feb 28 2019
Comments