cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Giovanni Corbelli

Giovanni Corbelli's wiki page.

Giovanni Corbelli has authored 7 sequences.

A351374 Base-20 Armstrong or narcissistic numbers (written in base 10).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2413, 53808, 760400, 760401, 45661018, 62470211, 619939142, 14613048357, 1421043363262183, 48470736648305918, 514822672411130775, 360672575087017687943, 264237343348909655564587, 267218514330351511200145
Offset: 1

Author

Giovanni Corbelli, Mar 18 2022

Keywords

Comments

Written in base twenty the numbers are: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, 60D, 6EA8, 4F100, 4F101, E57CAI, JA8FAB, 9DEC7H2, B86BB0HH.
Sequence is finite. Since k*19^k < 20^(k-1) for k >= 157, all terms must have less than 157 base-20 digits. 20*m is a term if and only if 20*m+1 is a term. - Chai Wah Wu, Apr 20 2022

Examples

			2413 is in the sequence because 2413 is 60D in base 20 (D stands for 13) and 6^3 + 0^3 + 13^3 = 2413. (The exponent 3 is the number of base-20 digits.)
		

Crossrefs

In other bases: A010344 (base 4), A010346 (base 5), A010348 (base 6), A010350 (base 7), A010354 (base 8), A010353 (base 9), A005188 (base 10), A161948 (base 11), A161949 (base 12), A161950 (base 13), A161951 (base 14), A161952 (base 15), A161953 (base 16).

Programs

  • Mathematica
    Select[Range[10^6], # == Total[ IntegerDigits[#, 20]^IntegerLength[#, 20]] &]
  • PARI
    isok(m) = my(d=digits(m, 20)); sum(k=1, #d, d[k]^#d) == m; \\ Michel Marcus, Mar 19 2022
    
  • Python
    from itertools import islice, combinations_with_replacement
    from sympy.ntheory.factor_ import digits
    def A351374_gen(): # generator of terms
        for k in range(1,157):
            a = tuple(i**k for i in range(20))
            yield from (x[0] for x in sorted(filter(lambda x:x[0] > 0 and tuple(sorted(digits(x[0],20)[1:])) == x[1], \
                              ((sum(map(lambda y:a[y],b)),b) for b in combinations_with_replacement(range(20),k)))))
    A351374_list = list(islice(A351374_gen(),20)) # Chai Wah Wu, Apr 20 2022

Extensions

a(28)-a(30) from Chai Wah Wu, Apr 20 2022
a(31)-a(33) from Jinyuan Wang, May 05 2025

A349296 First differences of A349295.

Original entry on oeis.org

1, 14, 109, 479, 1570, 4031, 8997, 17948, 32853, 56408, 91776, 143003, 215196, 313732, 444813, 616816, 839685, 1120435, 1472736, 1907995, 2440463, 3086644, 3861599, 4784197, 5878808, 7160841, 8659826, 10399512, 12407231, 14710254, 17351756
Offset: 1

Author

Giovanni Corbelli, Nov 13 2021

Keywords

Comments

a(n) is the number of ordered 6-tuples (a_1,a_2,a_3,a_4,a_5,a_6) having all terms in {1,...,n}, with at least one element equal to n, such that there exists a tetrahedron ABCD with those edge-lengths, taken in a particular order (see comments in A349295).
Conjecture: for n tending to infinity the ratio a(n) / A097125(n) tends to 24 as the probability that all a_i's are different tends to 1 and there are 24 6-tuples corresponding to the same tetrahedron if all a_i's are different. For n=254 the ratio is 23.9936919.

Crossrefs

A349295 a(n) is the number of ordered 6-tuples (a_1,a_2,a_3,a_4,a_5,a_6) having all terms in {1,...,n} such that there exists a tetrahedron ABCD with those edge-lengths, taken in a particular order (see comments).

Original entry on oeis.org

0, 1, 15, 124, 603, 2173, 6204, 15201, 33149, 66002, 122410, 214186, 357189, 572385, 886117, 1330930, 1947746, 2787431, 3907866, 5380602, 7288597, 9729060, 12815704, 16677303, 21461500, 27340308, 34501149, 43160975, 53560487, 65967718, 80677972, 98029728
Offset: 0

Author

Giovanni Corbelli, Nov 13 2021

Keywords

Comments

Edges with length a_1,a_2,a_3 form a face, a_1 is opposite to a_4, a_2 is opposite to a_5, a_3 is opposite to a_6. If the a_i's are all different, then there are 24 6-tuples corresponding to the same tetrahedron. The tetrahedron is possible iff triangular inequalities hold for every face and the Cayley-Menger determinant is positive. It has been proved that if triangular inequalities hold for at least one face and the Cayley-Menger determinant is positive, then the triangular inequalities for the other three faces hold, too (see article by Wirth, Dreiding in links, (5) at page 165).
Conjecture: The ratio a(n)/n^6 decreases with n and tends to a limit which is 0.10292439+-0,00000024 (1.96 sigmas, 95% confidence level) evaluated for n=2^32 on 6.4*10^12 random 6-tuples.

Examples

			For n=2 the 6-tuples are
(1,1,1,1,1,1),
(1,1,1,2,2,2), (1,2,2,2,1,1), (2,1,2,1,2,1), (2,2,1,1,1,2),
(2,2,1,2,2,1), (2,1,2,2,1,2), (1,2,2,1,2,2),
(1,2,2,2,2,2), (2,1,2,2,2,2), (2,2,1,2,2,2), (2,2,2,1,2,2), (2,2,2,2,1,2), (2,2,2,2,2,1),
(2,2,2,2,2,2)
corresponding to A097125(1) + A097125(2) = 5 different tetrahedra.
		

Crossrefs

A346638 a(n) is the number of 6-tuples (a_1,a_2,a_3,a_4,a_5,a_6) having all terms in {1,...,n} such that there exists a hexagon with these side-lengths.

Original entry on oeis.org

0, 1, 64, 729, 4096, 15619, 46614, 117481, 261640, 530181, 997228, 1766017, 2975688, 4808791, 7499506, 11342577, 16702960, 24026185, 33849432, 46813321, 63674416, 85318443, 112774222, 147228313, 190040376, 242759245, 307139716, 385160049, 479040184, 591260671
Offset: 0

Author

Giovanni Corbelli, Jul 26 2021

Keywords

Comments

The existence of such a six-sided polygon implies that every element of the sextuple is less than the sum of the other elements.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1+57x+302x^2+302x^3+51x^4+x^5)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,64,729,4096,15619,46614},40] (* Harvey P. Dale, Oct 30 2024 *)

Formula

a(n) = n^6 - 6*binomial(n+1,6) = n^6 - (n+1)*binomial(n,5).
General formula for k-tuples: a_k(n) = n^k - k*binomial(n+1,k) = n^k - (n+1)*binomial(n,k-1).
G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 51*x^4 + x^5)/(1 - x)^7. - Stefano Spezia, Sep 27 2021

A346637 a(n) is the number of quintuples (a_1,a_2,a_3,a_4,a_5) having all terms in {1,...,n} such that there exists a pentagon with these side-lengths.

Original entry on oeis.org

0, 1, 32, 243, 1019, 3095, 7671, 16527, 32138, 57789, 97690, 157091, 242397, 361283, 522809, 737535, 1017636, 1377017, 1831428, 2398579, 3098255, 3952431, 4985387, 6223823, 7696974, 9436725, 11477726, 13857507, 16616593, 19798619, 23450445, 27622271, 32367752
Offset: 0

Author

Giovanni Corbelli, Jul 26 2021

Keywords

Comments

The existence of such a five-sided polygon implies that every element of the quintuple is less than the sum of the other elements.

Crossrefs

Formula

a(n) = n^5 - 5*binomial(n+1,5) = n^5 - (n+1)*binomial(n,4).
General formula for k-tuples: a_k(n) = n^k - k*binomial(n+1,k) = n^k - (n+1)*binomial(n,k-1).
G.f.: x*(1 + 26*x + 66*x^2 + 21*x^3 + x^4)/(1 - x)^6. - Stefano Spezia, Sep 27 2021

A346636 a(n) is the number of quadruples (a_1, a_2, a_3, a_4) having all terms in {1,...,n} such that there exists a quadrilateral with these side lengths.

Original entry on oeis.org

0, 1, 16, 77, 236, 565, 1156, 2121, 3592, 5721, 8680, 12661, 17876, 24557, 32956, 43345, 56016, 71281, 89472, 110941, 136060, 165221, 198836, 237337, 281176, 330825, 386776, 449541, 519652, 597661, 684140, 779681, 884896, 1000417, 1126896, 1265005, 1415436
Offset: 0

Author

Giovanni Corbelli, Jul 26 2021

Keywords

Comments

The existence of such a four-sided polygon implies that every element of the quadruple is less than the sum of the other elements.

Crossrefs

Formula

Formula: a(n) = n^4 - 4*binomial(n+1,4) = n^4 - (n+1)*binomial(n,3).
General formula for k-tuples: a_k(n) = n^k - k*binomial(n+1,k) = n^k - (n+1)*binomial(n,k-1).

A346575 a(n) is the number of 6-tuples (a_1,a_2,a_3,a_4,a_5,a_6) having all terms in {1,...,n} such that there exists a tetrahedron ABCD with those edge-lengths.

Original entry on oeis.org

0, 1, 43, 327, 1792, 6139, 17607, 43291, 96142, 193149, 362383, 638533, 1075110, 1733023, 2700217, 4076133, 5994310, 8611819, 12119139, 16738861, 22746004, 30449013, 40212679, 52452031, 67651170, 86348035, 109166881, 136796079, 170024038, 209707144, 256814946, 312433795
Offset: 0

Author

Giovanni Corbelli, Jul 24 2021

Keywords

Comments

The existence of such a tetrahedron implies the following:
(1) there exists at least one permutation (a_i1,a_i2,a_i3,a_i4,a_i5,a_i6) such that triangular inequalities hold for (a_i1,a_i2,a_i3) (BCD), (a_i1,a_i4,a_i5) (ABC), (a_i2,a_i5,a_i6) (ACD) and (a_i3,a_i6,a_i4) (ABD), where we have a_i1=BC, a_i2=CD, a_i3=DB, a_i4=AB, a_i5=AC, a_i6=AD;
(2) a tetrahedron with such edge-lengths can be built.
Values were computed using a Visual Basic program with two different routines, manually checked for n = 2 and n = 3.
Conjecture 1: a(n)/n^6 tends to a limit which is 0.338170 +- 0.000017 (confidence level 95%). This number has been evaluated with a Monte-Carlo test on 3 billion sextuples with random values in (0,1) which simulate n -> oo.
Conjecture 2: there is no polynomial formula for a(n), as finite difference method fails.

Examples

			For a(2)=43 the solutions are (1,1,1,1,1,1), all 20 permutations of (1,1,1,2,2,2), all 15 permutations of (1,1,2,2,2,2), all 6 permutations of (1,2,2,2,2,2) and (2,2,2,2,2,2).
		

Crossrefs

Cf. A097125.
Equivalent sequence for triples with respect to triangles: A006003.

Programs

  • Python
    # See LINKS.

Formula

Conjecture: Limit_{n->oo} a(n)/n^6 exists and is approximately 0.33817.

Extensions

a(21)-a(31) from Lucas A. Brown, Mar 13 2024