A351374 Base-20 Armstrong or narcissistic numbers (written in base 10).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2413, 53808, 760400, 760401, 45661018, 62470211, 619939142, 14613048357, 1421043363262183, 48470736648305918, 514822672411130775, 360672575087017687943, 264237343348909655564587, 267218514330351511200145
Offset: 1
Examples
2413 is in the sequence because 2413 is 60D in base 20 (D stands for 13) and 6^3 + 0^3 + 13^3 = 2413. (The exponent 3 is the number of base-20 digits.)
Links
- Jinyuan Wang, C program
- Jinyuan Wang, Table of base-20 Armstrong numbers
- Eric Weisstein's World of Mathematics, Narcissistic Number
Crossrefs
Programs
-
Mathematica
Select[Range[10^6], # == Total[ IntegerDigits[#, 20]^IntegerLength[#, 20]] &]
-
PARI
isok(m) = my(d=digits(m, 20)); sum(k=1, #d, d[k]^#d) == m; \\ Michel Marcus, Mar 19 2022
-
Python
from itertools import islice, combinations_with_replacement from sympy.ntheory.factor_ import digits def A351374_gen(): # generator of terms for k in range(1,157): a = tuple(i**k for i in range(20)) yield from (x[0] for x in sorted(filter(lambda x:x[0] > 0 and tuple(sorted(digits(x[0],20)[1:])) == x[1], \ ((sum(map(lambda y:a[y],b)),b) for b in combinations_with_replacement(range(20),k))))) A351374_list = list(islice(A351374_gen(),20)) # Chai Wah Wu, Apr 20 2022
Extensions
a(28)-a(30) from Chai Wah Wu, Apr 20 2022
a(31)-a(33) from Jinyuan Wang, May 05 2025
Comments