cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306484 Expansion of Product_{k>=1} 1/(1 - Lucas(k)*x^k), where Lucas = A000204.

Original entry on oeis.org

1, 1, 4, 8, 24, 47, 129, 255, 641, 1308, 3064, 6225, 14286, 28792, 63571, 129240, 278329, 561044, 1190501, 2387695, 4987250, 9976529, 20536591, 40879937, 83416195, 165182927, 333581057, 658385847, 1318764282, 2590568669, 5154370637, 10082762399, 19929958391, 38848175389, 76331335061, 148233818041
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - LucasL[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[Sum[LucasL[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d LucasL[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} Lucas(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Feb 23 2019: (Start)
a(n) ~ c * 3^(n/2), where
c = 27050904.849254721356174679220734831574107371522481898944915... if n is even,
c = 27050894.152054775323471273913497954429537332266942696921416... if n is odd.
In closed form, c = ((3 + sqrt(3)) * Product_{k>=3}(1/(1 - Lucas(k)/3^(k/2))) + (-1)^n * (3 - sqrt(3)) * Product_{k>=3}(1/(1 - (-1)^k*Lucas(k)/3^(k/2))))/4.
(End)