A306499 a(n) is the smallest prime p such that Sum_{primes q <= p} Kronecker(A003658(n),q) > 0, or 0 if no such prime exists.
2, 2082927221, 11100143, 61463, 2083, 2, 1217, 5, 3, 719, 2, 11, 3, 2, 7, 17, 11, 2, 7, 5, 2, 13, 2, 3, 23, 7, 3, 2, 13, 19, 2, 23, 17, 2, 5, 2, 7, 3, 2, 13, 3, 2, 19, 7, 2, 31, 31, 5, 17, 2, 13, 13, 3, 47, 2, 5, 3, 2, 37, 2, 47, 2, 5, 7, 2, 43, 2, 3, 11, 5, 3, 2, 29
Offset: 1
Keywords
Examples
Let D = A003658(16) = 53, j(k) = Sum_{primes q <= prime(k)} Kronecker(D,q). For k = 1, Kronecker(53,2) = -1, so j(1) = -1; For k = 2, Kronecker(53,3) = -1, so j(2) = -2; For k = 3, Kronecker(53,5) = -1, so j(3) = -3; For k = 4, Kronecker(53,7) = +1, so j(4) = -2; For k = 5, Kronecker(53,11) = +1, so j(5) = -1; For k = 6, Kronecker(53,13) = +1, so j(6) = 0; For k = 7, Kronecker(53,17) = +1, so j(7) = 1. The first time for j > 0 occurs at the prime 17, so a(16) = 17.
Links
- Jianing Song, Table of n, a(n) for n = 1..3044
- Wikipedia, Chebyshev's bias
Crossrefs
Programs
-
PARI
b(n) = my(i=0); forprime(p=2,oo,i+=kronecker(n,p); if(i>0, return(p))) for(n=1, 300, if(isfundamental(n), print1(b(n), ", ")))
-
Sage
def KroneckerSum(): yield 2 ind = 0 while True: ind += 1 while not is_fundamental_discriminant(ind): ind += 1 s, p = 0, 1 while s < 1: p = p.next_prime() s += kronecker(ind, p) yield p A306499 = KroneckerSum() print([next(A306499) for in range(71)]) # _Peter Luschny, Feb 26 2019
Comments