cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A306461 Number T(n,k) of occurrences of k in a (signed) displacement set of a permutation of [n]; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 3, 2, 6, 10, 13, 15, 13, 10, 6, 24, 42, 56, 67, 76, 67, 56, 42, 24, 120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120, 720, 1320, 1824, 2250, 2612, 2921, 3186, 2921, 2612, 2250, 1824, 1320, 720, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 23633, 21514, 19086, 16296, 13080, 9360, 5040
Offset: 1

Views

Author

Alois P. Heinz, Feb 17 2019

Keywords

Examples

			The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement sets {p(i)-i, i=1..3}: {0}, {-1,0,1}, {-1,0,1}, {-2,1}, {-1,2}, {-2,0,2}, respectively. Numbers -2 and 2 occur twice, -1 and 1 occur thrice, and 0 occurs four times. So row n=3 is [2, 3, 4, 3, 2].
Triangle T(n,k) begins:
  :                             1                           ;
  :                        1,   1,   1                      ;
  :                   2,   3,   4,   3,   2                 ;
  :              6,  10,  13,  15,  13,  10,   6            ;
  :        24,  42,  56,  67,  76,  67,  56,  42,  24       ;
  :  120, 216, 294, 358, 411, 455, 411, 358, 294, 216, 120  ;
		

Crossrefs

Columns k=0-1 give: A002467, A180191.
Row sums give A306455.
T(n+1,n) gives A000142.
T(n+2,n) gives A007680.
Cf. A000142, A061018 (left half of this triangle), A306234, A306506, A324225.

Programs

  • Maple
    b:= proc(s, d) option remember; (n-> `if`(n=0, add(x^j, j=d),
          add(b(s minus {i}, d union {n-i}), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, {})):
    seq(T(n), n=1..8);
    # second Maple program:
    T:= (n, k)-> -add((-1)^j*binomial(n-abs(k), j)*(n-j)!, j=1..n):
    seq(seq(T(n, k), k=1-n..n-1), n=1..9);
  • Mathematica
    T[n_, k_] := -Sum[(-1)^j Binomial[n-Abs[k], j] (n-j)!, {j, 1, n}];
    Table[Table[T[n, k], {k, 1-n, n-1}], {n, 1, 9}] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)

Formula

T(n,k) = T(n,-k).
T(n,k) = - Sum_{j=1..n} (-1)^j * binomial(n-|k|,j) * (n-j)!.
T(n,k) = |k|! * (n-|k|)! [x^(n-|k|)] (1-exp(-x))/(1-x)^(|k|+1).
Sum_{k=1-n..n-1} T(n,k) = A306455(n).
T(n,k) = |k|! * A306234(n,k).

A306512 Number A(n,k) of permutations p of [n] having no index i with |p(i)-i| = k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 9, 1, 1, 2, 3, 5, 44, 1, 1, 2, 6, 9, 21, 265, 1, 1, 2, 6, 14, 34, 117, 1854, 1, 1, 2, 6, 24, 53, 176, 792, 14833, 1, 1, 2, 6, 24, 78, 265, 1106, 6205, 133496, 1, 1, 2, 6, 24, 120, 362, 1554, 8241, 55005, 1334961
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2019

Keywords

Examples

			A(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
A(4,1) = 5: 1234, 1432, 3214, 3412, 4231.
A(4,2) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.
Square array A(n,k) begins:
     1,   1,    1,    1,    1,    1,    1,    1, ...
     0,   1,    1,    1,    1,    1,    1,    1, ...
     1,   1,    2,    2,    2,    2,    2,    2, ...
     2,   2,    3,    6,    6,    6,    6,    6, ...
     9,   5,    9,   14,   24,   24,   24,   24, ...
    44,  21,   34,   53,   78,  120,  120,  120, ...
   265, 117,  176,  265,  362,  504,  720,  720, ...
  1854, 792, 1106, 1554, 2119, 2790, 3720, 5040, ...
		

Crossrefs

Columns k=0-3 give: A000166, A078480, A306523, A324365.
A(n+2j,n+j) (j=0..5) give: A000142, A001564, A001688, A023043, A023045, A023047.
A(2n,n) gives A306535.
Cf. A306506.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k>=n, n!, LinearAlgebra[
          Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    b:= proc(s, k) option remember; (n-> `if`(n=0, 1, add(
          `if`(abs(i-n)=k, 0, b(s minus {i}, k)), i=s)))(nops(s))
        end:
    A:= (n, k)-> `if`(k>=n, n!, b({$1..n}, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := If[k > n, n!, Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]]]; A[0, 0] = 1;
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 05 2021, from first Maple program *)
    b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[
         If[Abs[i-n] == k, 0, b[s ~Complement~ {i}, k]], {i, s}]]];
    A[n_, k_] := If[k >= n, n!, b[Range@n, k]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 01 2021, from second Maple program *)

Formula

A(n,k) = n! - A306506(n,k).
A(n,n+i) = n! for i >= 0.

A306524 Number of permutations p of [n] having at least one index i with |p(i)-i| = 2.

Original entry on oeis.org

0, 0, 0, 3, 15, 86, 544, 3934, 32079, 292509, 2952702, 32712087, 394749367, 5155010088, 72440184064, 1090017765544, 17486996858151, 297965879586295, 5374189975316350, 102290550351854445, 2049025241258716927, 43089888746430771294, 949172134240270646352
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2019

Keywords

Examples

			a(3) = 3: 231, 312, 321.
a(4) = 15: 1342, 1423, 1432, 2314, 2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4312.
		

Crossrefs

Column k=2 of A306506.

Programs

  • Mathematica
    T[n_, k_] := n! - Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]];
    a[n_] := If[n == 0, 0, T[n, 2]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz in A306506 *)

Formula

a(n) = n! - A306523(n).

A306675 Number of permutations p of [2n] having at least one index i with |p(i)-i| = n.

Original entry on oeis.org

0, 1, 15, 455, 25487, 2293839, 302786759, 55107190151, 13225725636255, 4047072044694047, 1537887376983737879, 710503968166486900119, 392198190427900768865711, 254928823778135499762712175, 192726190776270437820610404327, 167671785975355280903931051764519
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) b(n, k):= `if`(k=0, n!, b(n+1, k-1) -b(n, k-1)) end:
    a:= n-> (2*n)! -b(0, 2*n):
    seq(a(n), n=0..16);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, n!, b[n + 1, k - 1] - b[n, k - 1]];
    a[n_] := (2n)! - b[0, 2n];
    a /@ Range[0, 16] (* Jean-François Alcover, Apr 02 2021, after Alois P. Heinz *)

Formula

a(n) = A306506(2n,n).
a(n) = (2n)! - A306535(n).

A324366 Number of permutations p of [n] having at least one index i with |p(i)-i| = 3.

Original entry on oeis.org

0, 0, 0, 0, 10, 67, 455, 3486, 29296, 272064, 2782768, 31112974, 377989835, 4961822943, 70010940186, 1056948399594, 17002714972374, 290376470114307, 5247488148645251, 100046090532522600, 2006982109206921472, 42259647960510173184, 931935465775791556864
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2019

Keywords

Examples

			a(4) = 10: 2341, 2431, 3241, 3421, 4123, 4132, 4213, 4231, 4312, 4321.
		

Crossrefs

Column k=3 of A306506.

Formula

a(n) = n! - A324365(n).

A306511 Number of permutations p of [n] having at least one index i with |p(i)-i| = 1.

Original entry on oeis.org

0, 0, 1, 4, 19, 99, 603, 4248, 34115, 307875, 3085203, 33993870, 408482695, 5316309607, 74499953255, 1118421967520, 17907571955927, 304619809031127, 5486197279305911, 104289196264058030, 2086706157642260387, 43838287730208552691, 964790364323910060691
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2019

Keywords

Crossrefs

Column k=1 of A306506.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [0$2, 1, 4, 19][n+1],
          (2*(n^3-8*n^2+20*n-14)*a(n-1)-(n-4)*(n-1)*(n^2-5*n+7)*
           a(n-2)-(n-2)*(n^2-7*n+13)*a(n-3)+(n^4-12*n^3+53*n^2
           -102*n+71)*a(n-4)+(n-4)*(n^2-5*n+7)*a(n-5))/(n^2-7*n+13))
        end:
    seq(a(n), n=0..23);
  • Mathematica
    a[n_] := n! - Sum[Sum[(-1)^k (i-k)! Binomial[2i-k, k], {k, 0, i}],
         {i, 0, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, May 03 2021, after Vaclav Kotesovec in A078480 *)

Formula

a(n) = n! - A078480(n).
Showing 1-6 of 6 results.