A306512 Number A(n,k) of permutations p of [n] having no index i with |p(i)-i| = k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 9, 1, 1, 2, 3, 5, 44, 1, 1, 2, 6, 9, 21, 265, 1, 1, 2, 6, 14, 34, 117, 1854, 1, 1, 2, 6, 24, 53, 176, 792, 14833, 1, 1, 2, 6, 24, 78, 265, 1106, 6205, 133496, 1, 1, 2, 6, 24, 120, 362, 1554, 8241, 55005, 1334961
Offset: 0
Examples
A(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321. A(4,1) = 5: 1234, 1432, 3214, 3412, 4231. A(4,2) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 2, 2, 2, 2, ... 2, 2, 3, 6, 6, 6, 6, 6, ... 9, 5, 9, 14, 24, 24, 24, 24, ... 44, 21, 34, 53, 78, 120, 120, 120, ... 265, 117, 176, 265, 362, 504, 720, 720, ... 1854, 792, 1106, 1554, 2119, 2790, 3720, 5040, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..45, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(k>=n, n!, LinearAlgebra[ Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1)))) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # second Maple program: b:= proc(s, k) option remember; (n-> `if`(n=0, 1, add( `if`(abs(i-n)=k, 0, b(s minus {i}, k)), i=s)))(nops(s)) end: A:= (n, k)-> `if`(k>=n, n!, b({$1..n}, k)): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := If[k > n, n!, Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]]]; A[0, 0] = 1; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 05 2021, from first Maple program *) b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[ If[Abs[i-n] == k, 0, b[s ~Complement~ {i}, k]], {i, s}]]]; A[n_, k_] := If[k >= n, n!, b[Range@n, k]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 01 2021, from second Maple program *)
Formula
A(n,k) = n! - A306506(n,k).
A(n,n+i) = n! for i >= 0.