cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306519 Expansion of 2/(1 + 2*x + sqrt(1 - 4*x*(1 + x))).

Original entry on oeis.org

1, 0, 2, 4, 16, 56, 216, 848, 3424, 14080, 58816, 248832, 1064064, 4591744, 19970432, 87448832, 385226240, 1705979904, 7590632448, 33916934144, 152128126976, 684702330880, 3091429158912, 13997970530304, 63550155145216, 289216809762816, 1319185060069376, 6029646893252608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Comments

Inverse binomial transform of A001003.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[2/(1 + 2 x + Sqrt[1 - 4 x (1 + x)]), {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Hypergeometric2F1[1 - k, -k, 2, 2], {k, 0, n}], {n, 0, 27}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A001003(k).
a(n) ~ 2^(n - 1/4) * (1 + sqrt(2))^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 23 2019
D-finite with recurrence: (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-4*n+5)*a(n-2) +4*(-n+2)*a(n-3)=0. - R. J. Mathar, Jan 25 2020